allocator_api2/
boxed.rs

1//! The `Box<T>` type for heap allocation.
2//!
3//! [`Box<T>`], casually referred to as a 'box', provides the simplest form of
4//! heap allocation in Rust. Boxes provide ownership for this allocation, and
5//! drop their contents when they go out of scope. Boxes also ensure that they
6//! never allocate more than `isize::MAX` bytes.
7//!
8//! # Examples
9//!
10//! Move a value from the stack to the heap by creating a [`Box`]:
11//!
12//! ```
13//! use allocator_api2::boxed::Box;
14//!
15//! let val: u8 = 5;
16//! let boxed: Box<u8> = Box::new(val);
17//! ```
18//!
19//! Move a value from a [`Box`] back to the stack by [dereferencing]:
20//!
21//! ```
22//! use allocator_api2::boxed::Box;
23//!
24//! let boxed: Box<u8> = Box::new(5);
25//! let val: u8 = *boxed;
26//! ```
27//!
28//! Creating a recursive data structure:
29//!
30//! ```
31//! use allocator_api2::boxed::Box;
32//!
33//! #[derive(Debug)]
34//! enum List<T> {
35//!     Cons(T, Box<List<T>>),
36//!     Nil,
37//! }
38//!
39//! let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil))));
40//! println!("{list:?}");
41//! ```
42//!
43//! This will print `Cons(1, Cons(2, Nil))`.
44//!
45//! Recursive structures must be boxed, because if the definition of `Cons`
46//! looked like this:
47//!
48//! ```compile_fail,E0072
49//! # enum List<T> {
50//! Cons(T, List<T>),
51//! # }
52//! ```
53//!
54//! It wouldn't work. This is because the size of a `List` depends on how many
55//! elements are in the list, and so we don't know how much memory to allocate
56//! for a `Cons`. By introducing a [`Box<T>`], which has a defined size, we know how
57//! big `Cons` needs to be.
58//!
59//! # Memory layout
60//!
61//! For non-zero-sized values, a [`Box`] will use the [`Global`] allocator for
62//! its allocation. It is valid to convert both ways between a [`Box`] and a
63//! raw pointer allocated with the [`Global`] allocator, given that the
64//! [`Layout`] used with the allocator is correct for the type. More precisely,
65//! a `value: *mut T` that has been allocated with the [`Global`] allocator
66//! with `Layout::for_value(&*value)` may be converted into a box using
67//! [`Box::<T>::from_raw(value)`]. Conversely, the memory backing a `value: *mut
68//! T` obtained from [`Box::<T>::into_raw`] may be deallocated using the
69//! [`Global`] allocator with [`Layout::for_value(&*value)`].
70//!
71//! For zero-sized values, the `Box` pointer still has to be [valid] for reads
72//! and writes and sufficiently aligned. In particular, casting any aligned
73//! non-zero integer literal to a raw pointer produces a valid pointer, but a
74//! pointer pointing into previously allocated memory that since got freed is
75//! not valid. The recommended way to build a Box to a ZST if `Box::new` cannot
76//! be used is to use [`ptr::NonNull::dangling`].
77//!
78//! So long as `T: Sized`, a `Box<T>` is guaranteed to be represented
79//! as a single pointer and is also ABI-compatible with C pointers
80//! (i.e. the C type `T*`). This means that if you have extern "C"
81//! Rust functions that will be called from C, you can define those
82//! Rust functions using `Box<T>` types, and use `T*` as corresponding
83//! type on the C side. As an example, consider this C header which
84//! declares functions that create and destroy some kind of `Foo`
85//! value:
86//!
87//! ```c
88//! /* C header */
89//!
90//! /* Returns ownership to the caller */
91//! struct Foo* foo_new(void);
92//!
93//! /* Takes ownership from the caller; no-op when invoked with null */
94//! void foo_delete(struct Foo*);
95//! ```
96//!
97//! These two functions might be implemented in Rust as follows. Here, the
98//! `struct Foo*` type from C is translated to `Box<Foo>`, which captures
99//! the ownership constraints. Note also that the nullable argument to
100//! `foo_delete` is represented in Rust as `Option<Box<Foo>>`, since `Box<Foo>`
101//! cannot be null.
102//!
103//! ```
104//! use allocator_api2::boxed::Box;
105//!
106//! #[repr(C)]
107//! pub struct Foo;
108//!
109//! #[no_mangle]
110//! pub extern "C" fn foo_new() -> Box<Foo> {
111//!     Box::new(Foo)
112//! }
113//!
114//! #[no_mangle]
115//! pub extern "C" fn foo_delete(_: Option<Box<Foo>>) {}
116//! ```
117//!
118//! Even though `Box<T>` has the same representation and C ABI as a C pointer,
119//! this does not mean that you can convert an arbitrary `T*` into a `Box<T>`
120//! and expect things to work. `Box<T>` values will always be fully aligned,
121//! non-null pointers. Moreover, the destructor for `Box<T>` will attempt to
122//! free the value with the global allocator. In general, the best practice
123//! is to only use `Box<T>` for pointers that originated from the global
124//! allocator.
125//!
126//! **Important.** At least at present, you should avoid using
127//! `Box<T>` types for functions that are defined in C but invoked
128//! from Rust. In those cases, you should directly mirror the C types
129//! as closely as possible. Using types like `Box<T>` where the C
130//! definition is just using `T*` can lead to undefined behavior, as
131//! described in [rust-lang/unsafe-code-guidelines#198][ucg#198].
132//!
133//! # Considerations for unsafe code
134//!
135//! **Warning: This section is not normative and is subject to change, possibly
136//! being relaxed in the future! It is a simplified summary of the rules
137//! currently implemented in the compiler.**
138//!
139//! The aliasing rules for `Box<T>` are the same as for `&mut T`. `Box<T>`
140//! asserts uniqueness over its content. Using raw pointers derived from a box
141//! after that box has been mutated through, moved or borrowed as `&mut T`
142//! is not allowed. For more guidance on working with box from unsafe code, see
143//! [rust-lang/unsafe-code-guidelines#326][ucg#326].
144//!
145//!
146//! [ucg#198]: https://github.com/rust-lang/unsafe-code-guidelines/issues/198
147//! [ucg#326]: https://github.com/rust-lang/unsafe-code-guidelines/issues/326
148//! [dereferencing]: core::ops::Deref
149//! [`Box::<T>::from_raw(value)`]: Box::from_raw
150//! [`Global`]: crate::alloc::Global
151//! [`Layout`]: crate::alloc::Layout
152//! [`Layout::for_value(&*value)`]: crate::alloc::Layout::for_value
153//! [valid]: ptr#safety
154
155use core::any::Any;
156use core::borrow;
157use core::cmp::Ordering;
158use core::convert::{From, TryFrom};
159
160// use core::error::Error;
161use core::fmt;
162use core::future::Future;
163use core::hash::{Hash, Hasher};
164#[cfg(not(no_global_oom_handling))]
165use core::iter::FromIterator;
166use core::iter::{FusedIterator, Iterator};
167use core::marker::Unpin;
168use core::mem::{self, MaybeUninit};
169use core::ops::{Deref, DerefMut};
170use core::pin::Pin;
171use core::ptr::{self, NonNull};
172use core::task::{Context, Poll};
173
174use super::alloc::{AllocError, Allocator, Global, Layout};
175use super::raw_vec::RawVec;
176use super::unique::Unique;
177#[cfg(not(no_global_oom_handling))]
178use super::vec::Vec;
179#[cfg(not(no_global_oom_handling))]
180use alloc_crate::alloc::handle_alloc_error;
181
182/// A pointer type for heap allocation.
183///
184/// See the [module-level documentation](../../std/boxed/index.html) for more.
185pub struct Box<T: ?Sized, A: Allocator = Global>(Unique<T>, A);
186
187// Safety: Box owns both T and A, so sending is safe if
188// sending is safe for T and A.
189unsafe impl<T: ?Sized, A: Allocator> Send for Box<T, A>
190where
191    T: Send,
192    A: Send,
193{
194}
195
196// Safety: Box owns both T and A, so sharing is safe if
197// sharing is safe for T and A.
198unsafe impl<T: ?Sized, A: Allocator> Sync for Box<T, A>
199where
200    T: Sync,
201    A: Sync,
202{
203}
204
205impl<T> Box<T> {
206    /// Allocates memory on the heap and then places `x` into it.
207    ///
208    /// This doesn't actually allocate if `T` is zero-sized.
209    ///
210    /// # Examples
211    ///
212    /// ```
213    /// use allocator_api2::boxed::Box;
214    ///
215    /// let five = Box::new(5);
216    /// ```
217    #[cfg(all(not(no_global_oom_handling)))]
218    #[inline(always)]
219    #[must_use]
220    pub fn new(x: T) -> Self {
221        Self::new_in(x, Global)
222    }
223
224    /// Constructs a new box with uninitialized contents.
225    ///
226    /// # Examples
227    ///
228    /// ```
229    /// use allocator_api2::boxed::Box;
230    ///
231    /// let mut five = Box::<u32>::new_uninit();
232    ///
233    /// let five = unsafe {
234    ///     // Deferred initialization:
235    ///     five.as_mut_ptr().write(5);
236    ///
237    ///     five.assume_init()
238    /// };
239    ///
240    /// assert_eq!(*five, 5)
241    /// ```
242    #[cfg(not(no_global_oom_handling))]
243    #[must_use]
244    #[inline(always)]
245    pub fn new_uninit() -> Box<mem::MaybeUninit<T>> {
246        Self::new_uninit_in(Global)
247    }
248
249    /// Constructs a new `Box` with uninitialized contents, with the memory
250    /// being filled with `0` bytes.
251    ///
252    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
253    /// of this method.
254    ///
255    /// # Examples
256    ///
257    /// ```
258    /// use allocator_api2::boxed::Box;
259    ///
260    /// let zero = Box::<u32>::new_zeroed();
261    /// let zero = unsafe { zero.assume_init() };
262    ///
263    /// assert_eq!(*zero, 0)
264    /// ```
265    ///
266    /// [zeroed]: mem::MaybeUninit::zeroed
267    #[cfg(not(no_global_oom_handling))]
268    #[must_use]
269    #[inline(always)]
270    pub fn new_zeroed() -> Box<mem::MaybeUninit<T>> {
271        Self::new_zeroed_in(Global)
272    }
273
274    /// Constructs a new `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
275    /// `x` will be pinned in memory and unable to be moved.
276    ///
277    /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin(x)`
278    /// does the same as <code>[Box::into_pin]\([Box::new]\(x))</code>. Consider using
279    /// [`into_pin`](Box::into_pin) if you already have a `Box<T>`, or if you want to
280    /// construct a (pinned) `Box` in a different way than with [`Box::new`].
281    #[cfg(not(no_global_oom_handling))]
282    #[must_use]
283    #[inline(always)]
284    pub fn pin(x: T) -> Pin<Box<T>> {
285        Box::new(x).into()
286    }
287
288    /// Allocates memory on the heap then places `x` into it,
289    /// returning an error if the allocation fails
290    ///
291    /// This doesn't actually allocate if `T` is zero-sized.
292    ///
293    /// # Examples
294    ///
295    /// ```
296    /// use allocator_api2::boxed::Box;
297    ///
298    /// let five = Box::try_new(5)?;
299    /// # Ok::<(), allocator_api2::alloc::AllocError>(())
300    /// ```
301    #[inline(always)]
302    pub fn try_new(x: T) -> Result<Self, AllocError> {
303        Self::try_new_in(x, Global)
304    }
305
306    /// Constructs a new box with uninitialized contents on the heap,
307    /// returning an error if the allocation fails
308    ///
309    /// # Examples
310    ///
311    /// ```
312    /// use allocator_api2::boxed::Box;
313    ///
314    /// let mut five = Box::<u32>::try_new_uninit()?;
315    ///
316    /// let five = unsafe {
317    ///     // Deferred initialization:
318    ///     five.as_mut_ptr().write(5);
319    ///
320    ///     five.assume_init()
321    /// };
322    ///
323    /// assert_eq!(*five, 5);
324    /// # Ok::<(), allocator_api2::alloc::AllocError>(())
325    /// ```
326    #[inline(always)]
327    pub fn try_new_uninit() -> Result<Box<mem::MaybeUninit<T>>, AllocError> {
328        Box::try_new_uninit_in(Global)
329    }
330
331    /// Constructs a new `Box` with uninitialized contents, with the memory
332    /// being filled with `0` bytes on the heap
333    ///
334    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
335    /// of this method.
336    ///
337    /// # Examples
338    ///
339    /// ```
340    /// use allocator_api2::boxed::Box;
341    ///
342    /// let zero = Box::<u32>::try_new_zeroed()?;
343    /// let zero = unsafe { zero.assume_init() };
344    ///
345    /// assert_eq!(*zero, 0);
346    /// # Ok::<(), allocator_api2::alloc::AllocError>(())
347    /// ```
348    ///
349    /// [zeroed]: mem::MaybeUninit::zeroed
350    #[inline(always)]
351    pub fn try_new_zeroed() -> Result<Box<mem::MaybeUninit<T>>, AllocError> {
352        Box::try_new_zeroed_in(Global)
353    }
354}
355
356impl<T, A: Allocator> Box<T, A> {
357    /// Allocates memory in the given allocator then places `x` into it.
358    ///
359    /// This doesn't actually allocate if `T` is zero-sized.
360    ///
361    /// # Examples
362    ///
363    /// ```
364    /// use allocator_api2::{boxed::Box, alloc::System};
365    ///
366    /// let five = Box::new_in(5, System);
367    /// ```
368    #[cfg(not(no_global_oom_handling))]
369    #[must_use]
370    #[inline(always)]
371    pub fn new_in(x: T, alloc: A) -> Self
372    where
373        A: Allocator,
374    {
375        let mut boxed = Self::new_uninit_in(alloc);
376        unsafe {
377            boxed.as_mut_ptr().write(x);
378            boxed.assume_init()
379        }
380    }
381
382    /// Allocates memory in the given allocator then places `x` into it,
383    /// returning an error if the allocation fails
384    ///
385    /// This doesn't actually allocate if `T` is zero-sized.
386    ///
387    /// # Examples
388    ///
389    /// ```
390    /// use allocator_api2::{alloc::System, boxed::Box};
391    ///
392    /// let five = Box::try_new_in(5, System)?;
393    /// # Ok::<(), allocator_api2::alloc::AllocError>(())
394    /// ```
395    #[inline(always)]
396    pub fn try_new_in(x: T, alloc: A) -> Result<Self, AllocError>
397    where
398        A: Allocator,
399    {
400        let mut boxed = Self::try_new_uninit_in(alloc)?;
401        unsafe {
402            boxed.as_mut_ptr().write(x);
403            Ok(boxed.assume_init())
404        }
405    }
406
407    /// Constructs a new box with uninitialized contents in the provided allocator.
408    ///
409    /// # Examples
410    ///
411    /// ```
412    /// use allocator_api2::{boxed::Box, alloc::System};
413    ///
414    /// let mut five = Box::<u32, _>::new_uninit_in(System);
415    ///
416    /// let five = unsafe {
417    ///     // Deferred initialization:
418    ///     five.as_mut_ptr().write(5);
419    ///
420    ///     five.assume_init()
421    /// };
422    ///
423    /// assert_eq!(*five, 5)
424    /// ```
425    #[cfg(not(no_global_oom_handling))]
426    #[must_use]
427    // #[unstable(feature = "new_uninit", issue = "63291")]
428    #[inline(always)]
429    pub fn new_uninit_in(alloc: A) -> Box<mem::MaybeUninit<T>, A>
430    where
431        A: Allocator,
432    {
433        let layout = Layout::new::<mem::MaybeUninit<T>>();
434        // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable.
435        // That would make code size bigger.
436        match Box::try_new_uninit_in(alloc) {
437            Ok(m) => m,
438            Err(_) => handle_alloc_error(layout),
439        }
440    }
441
442    /// Constructs a new box with uninitialized contents in the provided allocator,
443    /// returning an error if the allocation fails
444    ///
445    /// # Examples
446    ///
447    /// ```
448    /// use allocator_api2::{boxed::Box, alloc::System};
449    ///
450    /// let mut five = Box::<u32, _>::try_new_uninit_in(System)?;
451    ///
452    /// let five = unsafe {
453    ///     // Deferred initialization:
454    ///     five.as_mut_ptr().write(5);
455    ///
456    ///     five.assume_init()
457    /// };
458    ///
459    /// assert_eq!(*five, 5);
460    /// # Ok::<(), allocator_api2::alloc::AllocError>(())
461    /// ```
462    #[inline(always)]
463    pub fn try_new_uninit_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError>
464    where
465        A: Allocator,
466    {
467        let ptr = if mem::size_of::<T>() == 0 {
468            NonNull::dangling()
469        } else {
470            let layout = Layout::new::<mem::MaybeUninit<T>>();
471            alloc.allocate(layout)?.cast()
472        };
473
474        unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) }
475    }
476
477    /// Constructs a new `Box` with uninitialized contents, with the memory
478    /// being filled with `0` bytes in the provided allocator.
479    ///
480    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
481    /// of this method.
482    ///
483    /// # Examples
484    ///
485    /// ```
486    /// use allocator_api2::{boxed::Box, alloc::System};
487    ///
488    /// let zero = Box::<u32, _>::new_zeroed_in(System);
489    /// let zero = unsafe { zero.assume_init() };
490    ///
491    /// assert_eq!(*zero, 0)
492    /// ```
493    ///
494    /// [zeroed]: mem::MaybeUninit::zeroed
495    #[cfg(not(no_global_oom_handling))]
496    // #[unstable(feature = "new_uninit", issue = "63291")]
497    #[must_use]
498    #[inline(always)]
499    pub fn new_zeroed_in(alloc: A) -> Box<mem::MaybeUninit<T>, A>
500    where
501        A: Allocator,
502    {
503        let layout = Layout::new::<mem::MaybeUninit<T>>();
504        // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable.
505        // That would make code size bigger.
506        match Box::try_new_zeroed_in(alloc) {
507            Ok(m) => m,
508            Err(_) => handle_alloc_error(layout),
509        }
510    }
511
512    /// Constructs a new `Box` with uninitialized contents, with the memory
513    /// being filled with `0` bytes in the provided allocator,
514    /// returning an error if the allocation fails,
515    ///
516    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
517    /// of this method.
518    ///
519    /// # Examples
520    ///
521    /// ```
522    /// use allocator_api2::{boxed::Box, alloc::System};
523    ///
524    /// let zero = Box::<u32, _>::try_new_zeroed_in(System)?;
525    /// let zero = unsafe { zero.assume_init() };
526    ///
527    /// assert_eq!(*zero, 0);
528    /// # Ok::<(), allocator_api2::alloc::AllocError>(())
529    /// ```
530    ///
531    /// [zeroed]: mem::MaybeUninit::zeroed
532    #[inline(always)]
533    pub fn try_new_zeroed_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError>
534    where
535        A: Allocator,
536    {
537        let ptr = if mem::size_of::<T>() == 0 {
538            NonNull::dangling()
539        } else {
540            let layout = Layout::new::<mem::MaybeUninit<T>>();
541            alloc.allocate_zeroed(layout)?.cast()
542        };
543        unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) }
544    }
545
546    /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then
547    /// `x` will be pinned in memory and unable to be moved.
548    ///
549    /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin_in(x, alloc)`
550    /// does the same as <code>[Box::into_pin]\([Box::new_in]\(x, alloc))</code>. Consider using
551    /// [`into_pin`](Box::into_pin) if you already have a `Box<T, A>`, or if you want to
552    /// construct a (pinned) `Box` in a different way than with [`Box::new_in`].
553    #[cfg(not(no_global_oom_handling))]
554    #[must_use]
555    #[inline(always)]
556    pub fn pin_in(x: T, alloc: A) -> Pin<Self>
557    where
558        A: 'static + Allocator,
559    {
560        Self::into_pin(Self::new_in(x, alloc))
561    }
562
563    /// Converts a `Box<T>` into a `Box<[T]>`
564    ///
565    /// This conversion does not allocate on the heap and happens in place.
566    #[inline(always)]
567    pub fn into_boxed_slice(boxed: Self) -> Box<[T], A> {
568        let (raw, alloc) = Box::into_raw_with_allocator(boxed);
569        unsafe { Box::from_raw_in(raw as *mut [T; 1], alloc) }
570    }
571
572    /// Consumes the `Box`, returning the wrapped value.
573    ///
574    /// # Examples
575    ///
576    /// ```
577    /// use allocator_api2::boxed::Box;
578    ///
579    /// let c = Box::new(5);
580    ///
581    /// assert_eq!(Box::into_inner(c), 5);
582    /// ```
583    #[inline(always)]
584    pub fn into_inner(boxed: Self) -> T {
585        // Override our default `Drop` implementation.
586        // Though the default `Drop` implementation drops the both the pointer and the allocator,
587        // here we only want to drop the allocator.
588        let boxed = mem::ManuallyDrop::new(boxed);
589        let alloc = unsafe { ptr::read(&boxed.1) };
590
591        let ptr = boxed.0;
592        let unboxed = unsafe { ptr.as_ptr().read() };
593        unsafe { alloc.deallocate(ptr.as_non_null_ptr().cast(), Layout::new::<T>()) };
594
595        unboxed
596    }
597}
598
599impl<T> Box<[T]> {
600    /// Constructs a new boxed slice with uninitialized contents.
601    ///
602    /// # Examples
603    ///
604    /// ```
605    /// use allocator_api2::boxed::Box;
606    ///
607    /// let mut values = Box::<[u32]>::new_uninit_slice(3);
608    ///
609    /// let values = unsafe {
610    ///     // Deferred initialization:
611    ///     values[0].as_mut_ptr().write(1);
612    ///     values[1].as_mut_ptr().write(2);
613    ///     values[2].as_mut_ptr().write(3);
614    ///
615    ///     values.assume_init()
616    /// };
617    ///
618    /// assert_eq!(*values, [1, 2, 3])
619    /// ```
620    #[cfg(not(no_global_oom_handling))]
621    #[must_use]
622    #[inline(always)]
623    pub fn new_uninit_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> {
624        unsafe { RawVec::with_capacity(len).into_box(len) }
625    }
626
627    /// Constructs a new boxed slice with uninitialized contents, with the memory
628    /// being filled with `0` bytes.
629    ///
630    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
631    /// of this method.
632    ///
633    /// # Examples
634    ///
635    /// ```
636    /// use allocator_api2::boxed::Box;
637    ///
638    /// let values = Box::<[u32]>::new_zeroed_slice(3);
639    /// let values = unsafe { values.assume_init() };
640    ///
641    /// assert_eq!(*values, [0, 0, 0])
642    /// ```
643    ///
644    /// [zeroed]: mem::MaybeUninit::zeroed
645    #[cfg(not(no_global_oom_handling))]
646    #[must_use]
647    #[inline(always)]
648    pub fn new_zeroed_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> {
649        unsafe { RawVec::with_capacity_zeroed(len).into_box(len) }
650    }
651
652    /// Constructs a new boxed slice with uninitialized contents. Returns an error if
653    /// the allocation fails
654    ///
655    /// # Examples
656    ///
657    /// ```
658    /// use allocator_api2::boxed::Box;
659    ///
660    /// let mut values = Box::<[u32]>::try_new_uninit_slice(3)?;
661    /// let values = unsafe {
662    ///     // Deferred initialization:
663    ///     values[0].as_mut_ptr().write(1);
664    ///     values[1].as_mut_ptr().write(2);
665    ///     values[2].as_mut_ptr().write(3);
666    ///     values.assume_init()
667    /// };
668    ///
669    /// assert_eq!(*values, [1, 2, 3]);
670    /// # Ok::<(), allocator_api2::alloc::AllocError>(())
671    /// ```
672    #[inline(always)]
673    pub fn try_new_uninit_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> {
674        Self::try_new_uninit_slice_in(len, Global)
675    }
676
677    /// Constructs a new boxed slice with uninitialized contents, with the memory
678    /// being filled with `0` bytes. Returns an error if the allocation fails
679    ///
680    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
681    /// of this method.
682    ///
683    /// # Examples
684    ///
685    /// ```
686    /// use allocator_api2::boxed::Box;
687    ///
688    /// let values = Box::<[u32]>::try_new_zeroed_slice(3)?;
689    /// let values = unsafe { values.assume_init() };
690    ///
691    /// assert_eq!(*values, [0, 0, 0]);
692    /// # Ok::<(), allocator_api2::alloc::AllocError>(())
693    /// ```
694    ///
695    /// [zeroed]: mem::MaybeUninit::zeroed
696    #[inline(always)]
697    pub fn try_new_zeroed_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> {
698        Self::try_new_zeroed_slice_in(len, Global)
699    }
700}
701
702impl<T, A: Allocator> Box<[T], A> {
703    /// Constructs a new boxed slice with uninitialized contents in the provided allocator.
704    ///
705    /// # Examples
706    ///
707    /// ```
708    /// use allocator_api2::{boxed::Box, alloc::System};
709    ///
710    /// let mut values = Box::<[u32], _>::new_uninit_slice_in(3, System);
711    ///
712    /// let values = unsafe {
713    ///     // Deferred initialization:
714    ///     values[0].as_mut_ptr().write(1);
715    ///     values[1].as_mut_ptr().write(2);
716    ///     values[2].as_mut_ptr().write(3);
717    ///
718    ///     values.assume_init()
719    /// };
720    ///
721    /// assert_eq!(*values, [1, 2, 3])
722    /// ```
723    #[cfg(not(no_global_oom_handling))]
724    #[must_use]
725    #[inline(always)]
726    pub fn new_uninit_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> {
727        unsafe { RawVec::with_capacity_in(len, alloc).into_box(len) }
728    }
729
730    /// Constructs a new boxed slice with uninitialized contents in the provided allocator,
731    /// with the memory being filled with `0` bytes.
732    ///
733    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
734    /// of this method.
735    ///
736    /// # Examples
737    ///
738    /// ```
739    /// use allocator_api2::{boxed::Box, alloc::System};
740    ///
741    /// let values = Box::<[u32], _>::new_zeroed_slice_in(3, System);
742    /// let values = unsafe { values.assume_init() };
743    ///
744    /// assert_eq!(*values, [0, 0, 0])
745    /// ```
746    ///
747    /// [zeroed]: mem::MaybeUninit::zeroed
748    #[cfg(not(no_global_oom_handling))]
749    #[must_use]
750    #[inline(always)]
751    pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> {
752        unsafe { RawVec::with_capacity_zeroed_in(len, alloc).into_box(len) }
753    }
754
755    /// Constructs a new boxed slice with uninitialized contents in the provided allocator. Returns an error if
756    /// the allocation fails.
757    ///
758    /// # Examples
759    ///
760    /// ```
761    /// use allocator_api2::{boxed::Box, alloc::System};
762    ///
763    /// let mut values = Box::<[u32], _>::try_new_uninit_slice_in(3, System)?;
764    /// let values = unsafe {
765    ///     // Deferred initialization:
766    ///     values[0].as_mut_ptr().write(1);
767    ///     values[1].as_mut_ptr().write(2);
768    ///     values[2].as_mut_ptr().write(3);
769    ///     values.assume_init()
770    /// };
771    ///
772    /// assert_eq!(*values, [1, 2, 3]);
773    /// # Ok::<(), allocator_api2::alloc::AllocError>(())
774    /// ```
775    #[inline]
776    pub fn try_new_uninit_slice_in(
777        len: usize,
778        alloc: A,
779    ) -> Result<Box<[MaybeUninit<T>], A>, AllocError> {
780        let ptr = if mem::size_of::<T>() == 0 || len == 0 {
781            NonNull::dangling()
782        } else {
783            let layout = match Layout::array::<mem::MaybeUninit<T>>(len) {
784                Ok(l) => l,
785                Err(_) => return Err(AllocError),
786            };
787            alloc.allocate(layout)?.cast()
788        };
789        unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, alloc).into_box(len)) }
790    }
791
792    /// Constructs a new boxed slice with uninitialized contents in the provided allocator, with the memory
793    /// being filled with `0` bytes. Returns an error if the allocation fails.
794    ///
795    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
796    /// of this method.
797    ///
798    /// # Examples
799    ///
800    /// ```
801    /// use allocator_api2::{boxed::Box, alloc::System};
802    ///
803    /// let values = Box::<[u32], _>::try_new_zeroed_slice_in(3, System)?;
804    /// let values = unsafe { values.assume_init() };
805    ///
806    /// assert_eq!(*values, [0, 0, 0]);
807    /// # Ok::<(), allocator_api2::alloc::AllocError>(())
808    /// ```
809    ///
810    /// [zeroed]: mem::MaybeUninit::zeroed
811    #[inline]
812    pub fn try_new_zeroed_slice_in(
813        len: usize,
814        alloc: A,
815    ) -> Result<Box<[mem::MaybeUninit<T>], A>, AllocError> {
816        let ptr = if mem::size_of::<T>() == 0 || len == 0 {
817            NonNull::dangling()
818        } else {
819            let layout = match Layout::array::<mem::MaybeUninit<T>>(len) {
820                Ok(l) => l,
821                Err(_) => return Err(AllocError),
822            };
823            alloc.allocate_zeroed(layout)?.cast()
824        };
825        unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, alloc).into_box(len)) }
826    }
827
828    /// Converts `self` into a vector without clones or allocation.
829    ///
830    /// The resulting vector can be converted back into a box via
831    /// `Vec<T>`'s `into_boxed_slice` method.
832    ///
833    /// # Examples
834    ///
835    /// ```
836    /// use allocator_api2::{boxed::Box, unsize_box, vec};
837    ///
838    /// let s: Box<[i32]> = unsize_box!(Box::new([10, 40, 30]));
839    /// let x = s.into_vec();
840    /// // `s` cannot be used anymore because it has been converted into `x`.
841    ///
842    /// assert_eq!(x, vec![10, 40, 30]);
843    /// ```
844    #[inline]
845    pub fn into_vec(self) -> Vec<T, A>
846    where
847        A: Allocator,
848    {
849        unsafe {
850            let len = self.len();
851            let (b, alloc) = Box::into_raw_with_allocator(self);
852            Vec::from_raw_parts_in(b as *mut T, len, len, alloc)
853        }
854    }
855}
856
857impl<T, A: Allocator> Box<mem::MaybeUninit<T>, A> {
858    /// Converts to `Box<T, A>`.
859    ///
860    /// # Safety
861    ///
862    /// As with [`MaybeUninit::assume_init`],
863    /// it is up to the caller to guarantee that the value
864    /// really is in an initialized state.
865    /// Calling this when the content is not yet fully initialized
866    /// causes immediate undefined behavior.
867    ///
868    /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
869    ///
870    /// # Examples
871    ///
872    /// ```
873    /// use allocator_api2::boxed::Box;
874    ///
875    /// let mut five = Box::<u32>::new_uninit();
876    ///
877    /// let five: Box<u32> = unsafe {
878    ///     // Deferred initialization:
879    ///     five.as_mut_ptr().write(5);
880    ///
881    ///     five.assume_init()
882    /// };
883    ///
884    /// assert_eq!(*five, 5)
885    /// ```
886    #[inline(always)]
887    pub unsafe fn assume_init(self) -> Box<T, A> {
888        let (raw, alloc) = Self::into_raw_with_allocator(self);
889        unsafe { Box::<T, A>::from_raw_in(raw as *mut T, alloc) }
890    }
891
892    /// Writes the value and converts to `Box<T, A>`.
893    ///
894    /// This method converts the box similarly to [`Box::assume_init`] but
895    /// writes `value` into it before conversion thus guaranteeing safety.
896    /// In some scenarios use of this method may improve performance because
897    /// the compiler may be able to optimize copying from stack.
898    ///
899    /// # Examples
900    ///
901    /// ```
902    /// use allocator_api2::boxed::Box;
903    ///
904    /// let big_box = Box::<[usize; 1024]>::new_uninit();
905    ///
906    /// let mut array = [0; 1024];
907    /// for (i, place) in array.iter_mut().enumerate() {
908    ///     *place = i;
909    /// }
910    ///
911    /// // The optimizer may be able to elide this copy, so previous code writes
912    /// // to heap directly.
913    /// let big_box = Box::write(big_box, array);
914    ///
915    /// for (i, x) in big_box.iter().enumerate() {
916    ///     assert_eq!(*x, i);
917    /// }
918    /// ```
919    #[inline(always)]
920    pub fn write(mut boxed: Self, value: T) -> Box<T, A> {
921        unsafe {
922            (*boxed).write(value);
923            boxed.assume_init()
924        }
925    }
926}
927
928impl<T, A: Allocator> Box<[mem::MaybeUninit<T>], A> {
929    /// Converts to `Box<[T], A>`.
930    ///
931    /// # Safety
932    ///
933    /// As with [`MaybeUninit::assume_init`],
934    /// it is up to the caller to guarantee that the values
935    /// really are in an initialized state.
936    /// Calling this when the content is not yet fully initialized
937    /// causes immediate undefined behavior.
938    ///
939    /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
940    ///
941    /// # Examples
942    ///
943    /// ```
944    /// use allocator_api2::boxed::Box;
945    ///
946    /// let mut values = Box::<[u32]>::new_uninit_slice(3);
947    ///
948    /// let values = unsafe {
949    ///     // Deferred initialization:
950    ///     values[0].as_mut_ptr().write(1);
951    ///     values[1].as_mut_ptr().write(2);
952    ///     values[2].as_mut_ptr().write(3);
953    ///
954    ///     values.assume_init()
955    /// };
956    ///
957    /// assert_eq!(*values, [1, 2, 3])
958    /// ```
959    #[inline(always)]
960    pub unsafe fn assume_init(self) -> Box<[T], A> {
961        let (raw, alloc) = Self::into_raw_with_allocator(self);
962        unsafe { Box::<[T], A>::from_raw_in(raw as *mut [T], alloc) }
963    }
964}
965
966impl<T: ?Sized> Box<T> {
967    /// Constructs a box from a raw pointer.
968    ///
969    /// After calling this function, the raw pointer is owned by the
970    /// resulting `Box`. Specifically, the `Box` destructor will call
971    /// the destructor of `T` and free the allocated memory. For this
972    /// to be safe, the memory must have been allocated in accordance
973    /// with the [memory layout] used by `Box` .
974    ///
975    /// # Safety
976    ///
977    /// This function is unsafe because improper use may lead to
978    /// memory problems. For example, a double-free may occur if the
979    /// function is called twice on the same raw pointer.
980    ///
981    /// The safety conditions are described in the [memory layout] section.
982    ///
983    /// # Examples
984    ///
985    /// Recreate a `Box` which was previously converted to a raw pointer
986    /// using [`Box::into_raw`]:
987    /// ```
988    /// use allocator_api2::boxed::Box;
989    ///
990    /// let x = Box::new(5);
991    /// let ptr = Box::into_raw(x);
992    /// let x = unsafe { Box::from_raw(ptr) };
993    /// ```
994    /// Manually create a `Box` from scratch by using the global allocator:
995    /// ```
996    /// use allocator_api2::{boxed::Box, alloc::{alloc, Layout}};
997    ///
998    /// unsafe {
999    ///     let ptr = alloc(Layout::new::<i32>()) as *mut i32;
1000    ///     // In general .write is required to avoid attempting to destruct
1001    ///     // the (uninitialized) previous contents of `ptr`, though for this
1002    ///     // simple example `*ptr = 5` would have worked as well.
1003    ///     ptr.write(5);
1004    ///     let x = Box::from_raw(ptr);
1005    /// }
1006    /// ```
1007    ///
1008    /// [memory layout]: self#memory-layout
1009    /// [`Layout`]: crate::Layout
1010    #[must_use = "call `drop(from_raw(ptr))` if you intend to drop the `Box`"]
1011    #[inline(always)]
1012    pub unsafe fn from_raw(raw: *mut T) -> Self {
1013        unsafe { Self::from_raw_in(raw, Global) }
1014    }
1015
1016    /// Constructs a box from a `NonNull` pointer.
1017    ///
1018    /// After calling this function, the `NonNull` pointer is owned by
1019    /// the resulting `Box`. Specifically, the `Box` destructor will call
1020    /// the destructor of `T` and free the allocated memory. For this
1021    /// to be safe, the memory must have been allocated in accordance
1022    /// with the [memory layout] used by `Box` .
1023    ///
1024    /// # Safety
1025    ///
1026    /// This function is unsafe because improper use may lead to
1027    /// memory problems. For example, a double-free may occur if the
1028    /// function is called twice on the same `NonNull` pointer.
1029    ///
1030    /// The safety conditions are described in the [memory layout] section.
1031    ///
1032    /// # Examples
1033    ///
1034    /// Recreate a `Box` which was previously converted to a `NonNull`
1035    /// pointer using [`Box::into_non_null`]:
1036    /// ```
1037    /// use allocator_api2::boxed::Box;
1038    ///
1039    /// let x = Box::new(5);
1040    /// let non_null = Box::into_non_null(x);
1041    /// let x = unsafe { Box::from_non_null(non_null) };
1042    /// ```
1043    /// Manually create a `Box` from scratch by using the global allocator:
1044    /// ```
1045    /// use std::ptr::NonNull;
1046    ///
1047    /// use allocator_api2::{boxed::Box, alloc::{alloc, Layout}};
1048    ///
1049    /// unsafe {
1050    ///     let non_null = NonNull::new(alloc(Layout::new::<i32>()).cast::<i32>())
1051    ///         .expect("allocation failed");
1052    ///     // In general .write is required to avoid attempting to destruct
1053    ///     // the (uninitialized) previous contents of `non_null`.
1054    ///     non_null.write(5);
1055    ///     let x = Box::from_non_null(non_null);
1056    /// }
1057    /// ```
1058    ///
1059    /// [memory layout]: self#memory-layout
1060    /// [`Layout`]: crate::Layout
1061    #[inline(always)]
1062    #[must_use = "call `drop(Box::from_non_null(ptr))` if you intend to drop the `Box`"]
1063    pub unsafe fn from_non_null(ptr: NonNull<T>) -> Self {
1064        unsafe { Self::from_raw(ptr.as_ptr()) }
1065    }
1066}
1067
1068impl<T: ?Sized, A: Allocator> Box<T, A> {
1069    /// Constructs a box from a raw pointer in the given allocator.
1070    ///
1071    /// After calling this function, the raw pointer is owned by the
1072    /// resulting `Box`. Specifically, the `Box` destructor will call
1073    /// the destructor of `T` and free the allocated memory. For this
1074    /// to be safe, the memory must have been allocated in accordance
1075    /// with the [memory layout] used by `Box` .
1076    ///
1077    /// # Safety
1078    ///
1079    /// This function is unsafe because improper use may lead to
1080    /// memory problems. For example, a double-free may occur if the
1081    /// function is called twice on the same raw pointer.
1082    ///
1083    ///
1084    /// # Examples
1085    ///
1086    /// Recreate a `Box` which was previously converted to a raw pointer
1087    /// using [`Box::into_raw_with_allocator`]:
1088    /// ```
1089    /// use allocator_api2::{boxed::Box, alloc::System};
1090    ///
1091    /// let x = Box::new_in(5, System);
1092    /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
1093    /// let x = unsafe { Box::from_raw_in(ptr, alloc) };
1094    /// ```
1095    /// Manually create a `Box` from scratch by using the system allocator:
1096    /// ```
1097    /// use allocator_api2::{boxed::Box, alloc::{Allocator, Layout, System}};
1098    ///
1099    /// unsafe {
1100    ///     let ptr = System.allocate(Layout::new::<i32>())?.as_ptr().cast::<i32>();
1101    ///     // In general .write is required to avoid attempting to destruct
1102    ///     // the (uninitialized) previous contents of `ptr`, though for this
1103    ///     // simple example `*ptr = 5` would have worked as well.
1104    ///     ptr.write(5);
1105    ///     let x = Box::from_raw_in(ptr, System);
1106    /// }
1107    /// # Ok::<(), allocator_api2::alloc::AllocError>(())
1108    /// ```
1109    ///
1110    /// [memory layout]: self#memory-layout
1111    /// [`Layout`]: crate::Layout
1112    #[inline(always)]
1113    pub const unsafe fn from_raw_in(raw: *mut T, alloc: A) -> Self {
1114        Box(unsafe { Unique::new_unchecked(raw) }, alloc)
1115    }
1116
1117    /// Constructs a box from a `NonNull` pointer in the given allocator.
1118    ///
1119    /// After calling this function, the `NonNull` pointer is owned by
1120    /// the resulting `Box`. Specifically, the `Box` destructor will call
1121    /// the destructor of `T` and free the allocated memory. For this
1122    /// to be safe, the memory must have been allocated in accordance
1123    /// with the [memory layout] used by `Box` .
1124    ///
1125    /// # Safety
1126    ///
1127    /// This function is unsafe because improper use may lead to
1128    /// memory problems. For example, a double-free may occur if the
1129    /// function is called twice on the same raw pointer.
1130    ///
1131    ///
1132    /// # Examples
1133    ///
1134    /// Recreate a `Box` which was previously converted to a `NonNull` pointer
1135    /// using [`Box::into_non_null_with_allocator`]:
1136    /// ```
1137    /// use allocator_api2::{boxed::Box, alloc::System};
1138    ///
1139    /// let x = Box::new_in(5, System);
1140    /// let (non_null, alloc) = Box::into_non_null_with_allocator(x);
1141    /// let x = unsafe { Box::from_non_null_in(non_null, alloc) };
1142    /// ```
1143    /// Manually create a `Box` from scratch by using the system allocator:
1144    /// ```
1145    /// use allocator_api2::{boxed::Box, alloc::{Allocator, Layout, System}};
1146    ///
1147    /// unsafe {
1148    ///     let non_null = System.allocate(Layout::new::<i32>())?.cast::<i32>();
1149    ///     // In general .write is required to avoid attempting to destruct
1150    ///     // the (uninitialized) previous contents of `non_null`.
1151    ///     non_null.write(5);
1152    ///     let x = Box::from_non_null_in(non_null, System);
1153    /// }
1154    /// # Ok::<(), allocator_api2::alloc::AllocError>(())
1155    /// ```
1156    ///
1157    /// [memory layout]: self#memory-layout
1158    /// [`Layout`]: crate::Layout
1159    #[inline(always)]
1160    pub const unsafe fn from_non_null_in(raw: NonNull<T>, alloc: A) -> Self {
1161        // SAFETY: guaranteed by the caller.
1162        unsafe { Box::from_raw_in(raw.as_ptr(), alloc) }
1163    }
1164
1165    /// Consumes the `Box`, returning a wrapped raw pointer.
1166    ///
1167    /// The pointer will be properly aligned and non-null.
1168    ///
1169    /// After calling this function, the caller is responsible for the
1170    /// memory previously managed by the `Box`. In particular, the
1171    /// caller should properly destroy `T` and release the memory, taking
1172    /// into account the [memory layout] used by `Box`. The easiest way to
1173    /// do this is to convert the raw pointer back into a `Box` with the
1174    /// [`Box::from_raw`] function, allowing the `Box` destructor to perform
1175    /// the cleanup.
1176    ///
1177    /// Note: this is an associated function, which means that you have
1178    /// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This
1179    /// is so that there is no conflict with a method on the inner type.
1180    ///
1181    /// # Examples
1182    /// Converting the raw pointer back into a `Box` with [`Box::from_raw`]
1183    /// for automatic cleanup:
1184    /// ```
1185    /// use allocator_api2::boxed::Box;
1186    ///
1187    /// let x = Box::new(String::from("Hello"));
1188    /// let ptr = Box::into_raw(x);
1189    /// let x = unsafe { Box::from_raw(ptr) };
1190    /// ```
1191    /// Manual cleanup by explicitly running the destructor and deallocating
1192    /// the memory:
1193    /// ```
1194    /// use std::ptr;
1195    ///
1196    /// use allocator_api2::{boxed::Box, alloc::{dealloc, Layout}};
1197    ///
1198    /// let x = Box::new(String::from("Hello"));
1199    /// let p = Box::into_raw(x);
1200    /// unsafe {
1201    ///     ptr::drop_in_place(p);
1202    ///     dealloc(p as *mut u8, Layout::new::<String>());
1203    /// }
1204    /// ```
1205    ///
1206    /// [memory layout]: self#memory-layout
1207    #[inline(always)]
1208    pub fn into_raw(b: Self) -> *mut T {
1209        Self::into_raw_with_allocator(b).0
1210    }
1211
1212    /// Consumes the `Box`, returning a wrapped `NonNull` pointer.
1213    ///
1214    /// The pointer will be properly aligned.
1215    ///
1216    /// After calling this function, the caller is responsible for the
1217    /// memory previously managed by the `Box`. In particular, the
1218    /// caller should properly destroy `T` and release the memory, taking
1219    /// into account the [memory layout] used by `Box`. The easiest way to
1220    /// do this is to convert the `NonNull` pointer back into a `Box` with the
1221    /// [`Box::from_non_null`] function, allowing the `Box` destructor to
1222    /// perform the cleanup.
1223    ///
1224    /// Note: this is an associated function, which means that you have
1225    /// to call it as `Box::into_non_null(b)` instead of `b.into_non_null()`.
1226    /// This is so that there is no conflict with a method on the inner type.
1227    ///
1228    /// # Examples
1229    /// Converting the `NonNull` pointer back into a `Box` with [`Box::from_non_null`]
1230    /// for automatic cleanup:
1231    /// ```
1232    /// use allocator_api2::boxed::Box;
1233    ///
1234    /// let x = Box::new(String::from("Hello"));
1235    /// let non_null = Box::into_non_null(x);
1236    /// let x = unsafe { Box::from_non_null(non_null) };
1237    /// ```
1238    /// Manual cleanup by explicitly running the destructor and deallocating
1239    /// the memory:
1240    /// ```
1241    /// use allocator_api2::{boxed::Box, alloc::{dealloc, Layout}};
1242    ///
1243    /// let x = Box::new(String::from("Hello"));
1244    /// let non_null = Box::into_non_null(x);
1245    /// unsafe {
1246    ///     non_null.drop_in_place();
1247    ///     dealloc(non_null.as_ptr().cast::<u8>(), Layout::new::<String>());
1248    /// }
1249    /// ```
1250    /// Note: This is equivalent to the following:
1251    /// ```
1252    /// use allocator_api2::boxed::Box;
1253    ///
1254    /// let x = Box::new(String::from("Hello"));
1255    /// let non_null = Box::into_non_null(x);
1256    /// unsafe {
1257    ///     drop(Box::from_non_null(non_null));
1258    /// }
1259    /// ```
1260    ///
1261    /// [memory layout]: self#memory-layout
1262    #[must_use = "losing the pointer will leak memory"]
1263    #[inline(always)]
1264    pub fn into_non_null(b: Self) -> NonNull<T> {
1265        // SAFETY: `Box` is guaranteed to be non-null.
1266        unsafe { NonNull::new_unchecked(Self::into_raw(b)) }
1267    }
1268
1269    /// Consumes the `Box`, returning a wrapped raw pointer and the allocator.
1270    ///
1271    /// The pointer will be properly aligned and non-null.
1272    ///
1273    /// After calling this function, the caller is responsible for the
1274    /// memory previously managed by the `Box`. In particular, the
1275    /// caller should properly destroy `T` and release the memory, taking
1276    /// into account the [memory layout] used by `Box`. The easiest way to
1277    /// do this is to convert the raw pointer back into a `Box` with the
1278    /// [`Box::from_raw_in`] function, allowing the `Box` destructor to perform
1279    /// the cleanup.
1280    ///
1281    /// Note: this is an associated function, which means that you have
1282    /// to call it as `Box::into_raw_with_allocator(b)` instead of `b.into_raw_with_allocator()`. This
1283    /// is so that there is no conflict with a method on the inner type.
1284    ///
1285    /// # Examples
1286    /// Converting the raw pointer back into a `Box` with [`Box::from_raw_in`]
1287    /// for automatic cleanup:
1288    /// ```
1289    /// use allocator_api2::{boxed::Box, alloc::System};
1290    ///
1291    /// let x = Box::new_in(String::from("Hello"), System);
1292    /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
1293    /// let x = unsafe { Box::from_raw_in(ptr, alloc) };
1294    /// ```
1295    /// Manual cleanup by explicitly running the destructor and deallocating
1296    /// the memory:
1297    /// ```
1298    /// use std::ptr::{self, NonNull};
1299    ///
1300    /// use allocator_api2::{boxed::Box, alloc::{Allocator, Layout, System}};
1301    ///
1302    /// let x = Box::new_in(String::from("Hello"), System);
1303    /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
1304    /// unsafe {
1305    ///     ptr::drop_in_place(ptr);
1306    ///     let non_null = NonNull::new_unchecked(ptr);
1307    ///     alloc.deallocate(non_null.cast(), Layout::new::<String>());
1308    /// }
1309    /// ```
1310    ///
1311    /// [memory layout]: self#memory-layout
1312    #[inline(always)]
1313    pub fn into_raw_with_allocator(b: Self) -> (*mut T, A) {
1314        let (leaked, alloc) = Box::into_non_null_with_allocator(b);
1315        (leaked.as_ptr(), alloc)
1316    }
1317
1318    /// Consumes the `Box`, returning a wrapped `NonNull` pointer and the allocator.
1319    ///
1320    /// The pointer will be properly aligned.
1321    ///
1322    /// After calling this function, the caller is responsible for the
1323    /// memory previously managed by the `Box`. In particular, the
1324    /// caller should properly destroy `T` and release the memory, taking
1325    /// into account the [memory layout] used by `Box`. The easiest way to
1326    /// do this is to convert the `NonNull` pointer back into a `Box` with the
1327    /// [`Box::from_non_null_in`] function, allowing the `Box` destructor to
1328    /// perform the cleanup.
1329    ///
1330    /// Note: this is an associated function, which means that you have
1331    /// to call it as `Box::into_non_null_with_allocator(b)` instead of
1332    /// `b.into_non_null_with_allocator()`. This is so that there is no
1333    /// conflict with a method on the inner type.
1334    ///
1335    /// # Examples
1336    /// Converting the `NonNull` pointer back into a `Box` with
1337    /// [`Box::from_non_null_in`] for automatic cleanup:
1338    /// ```
1339    /// use allocator_api2::{boxed::Box, alloc::System};
1340    ///
1341    /// let x = Box::new_in(String::from("Hello"), System);
1342    /// let (non_null, alloc) = Box::into_non_null_with_allocator(x);
1343    /// let x = unsafe { Box::from_non_null_in(non_null, alloc) };
1344    /// ```
1345    /// Manual cleanup by explicitly running the destructor and deallocating
1346    /// the memory:
1347    /// ```
1348    /// use allocator_api2::{boxed::Box, alloc::{Allocator, Layout, System}};
1349    ///
1350    /// let x = Box::new_in(String::from("Hello"), System);
1351    /// let (non_null, alloc) = Box::into_non_null_with_allocator(x);
1352    /// unsafe {
1353    ///     non_null.drop_in_place();
1354    ///     alloc.deallocate(non_null.cast::<u8>(), Layout::new::<String>());
1355    /// }
1356    /// ```
1357    ///
1358    /// [memory layout]: self#memory-layout
1359    #[inline(always)]
1360    pub fn into_non_null_with_allocator(b: Self) -> (NonNull<T>, A) {
1361        // Box is recognized as a "unique pointer" by Stacked Borrows, but internally it is a
1362        // raw pointer for the type system. Turning it directly into a raw pointer would not be
1363        // recognized as "releasing" the unique pointer to permit aliased raw accesses,
1364        // so all raw pointer methods have to go through `Box::leak`. Turning *that* to a raw pointer
1365        // behaves correctly.
1366        let alloc = unsafe { ptr::read(&b.1) };
1367        (NonNull::from(Box::leak(b)), alloc)
1368    }
1369    /// Returns a raw mutable pointer to the `Box`'s contents.
1370    ///
1371    /// The caller must ensure that the `Box` outlives the pointer this
1372    /// function returns, or else it will end up dangling.
1373    ///
1374    /// This method guarantees that for the purpose of the aliasing model, this method
1375    /// does not materialize a reference to the underlying memory, and thus the returned pointer
1376    /// will remain valid when mixed with other calls to [`as_ptr`] and [`as_mut_ptr`].
1377    /// Note that calling other methods that materialize references to the memory
1378    /// may still invalidate this pointer.
1379    /// See the example below for how this guarantee can be used.
1380    ///
1381    /// # Examples
1382    ///
1383    /// Due to the aliasing guarantee, the following code is legal:
1384    ///
1385    /// ```
1386    /// use allocator_api2::boxed::Box;
1387    ///
1388    /// unsafe {
1389    ///     let mut b = Box::new(0);
1390    ///     let ptr1 = Box::as_mut_ptr(&mut b);
1391    ///     ptr1.write(1);
1392    ///     let ptr2 = Box::as_mut_ptr(&mut b);
1393    ///     ptr2.write(2);
1394    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
1395    ///     ptr1.write(3);
1396    /// }
1397    /// ```
1398    ///
1399    /// [`as_mut_ptr`]: Self::as_mut_ptr
1400    /// [`as_ptr`]: Self::as_ptr
1401    #[inline(always)]
1402    pub fn as_mut_ptr(b: &mut Self) -> *mut T {
1403        b.0.as_ptr()
1404    }
1405
1406    /// Returns a raw pointer to the `Box`'s contents.
1407    ///
1408    /// The caller must ensure that the `Box` outlives the pointer this
1409    /// function returns, or else it will end up dangling.
1410    ///
1411    /// The caller must also ensure that the memory the pointer (non-transitively) points to
1412    /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
1413    /// derived from it. If you need to mutate the contents of the `Box`, use [`as_mut_ptr`].
1414    ///
1415    /// This method guarantees that for the purpose of the aliasing model, this method
1416    /// does not materialize a reference to the underlying memory, and thus the returned pointer
1417    /// will remain valid when mixed with other calls to [`as_ptr`] and [`as_mut_ptr`].
1418    /// Note that calling other methods that materialize mutable references to the memory,
1419    /// as well as writing to this memory, may still invalidate this pointer.
1420    /// See the example below for how this guarantee can be used.
1421    ///
1422    /// # Examples
1423    ///
1424    /// Due to the aliasing guarantee, the following code is legal:
1425    ///
1426    /// ```
1427    /// use allocator_api2::boxed::Box;
1428    ///
1429    /// unsafe {
1430    ///     let mut v = Box::new(0);
1431    ///     let ptr1 = Box::as_ptr(&v);
1432    ///     let ptr2 = Box::as_mut_ptr(&mut v);
1433    ///     let _val = ptr2.read();
1434    ///     // No write to this memory has happened yet, so `ptr1` is still valid.
1435    ///     let _val = ptr1.read();
1436    ///     // However, once we do a write...
1437    ///     ptr2.write(1);
1438    ///     // ... `ptr1` is no longer valid.
1439    ///     // This would be UB: let _val = ptr1.read();
1440    /// }
1441    /// ```
1442    ///
1443    /// [`as_mut_ptr`]: Self::as_mut_ptr
1444    /// [`as_ptr`]: Self::as_ptr
1445    #[inline(always)]
1446    pub fn as_ptr(b: &Self) -> *const T {
1447        b.0.as_ptr()
1448    }
1449
1450    /// Returns a reference to the underlying allocator.
1451    ///
1452    /// Note: this is an associated function, which means that you have
1453    /// to call it as `Box::allocator(&b)` instead of `b.allocator()`. This
1454    /// is so that there is no conflict with a method on the inner type.
1455    #[inline(always)]
1456    pub const fn allocator(b: &Self) -> &A {
1457        &b.1
1458    }
1459
1460    /// Consumes and leaks the `Box`, returning a mutable reference,
1461    /// `&'a mut T`. Note that the type `T` must outlive the chosen lifetime
1462    /// `'a`. If the type has only static references, or none at all, then this
1463    /// may be chosen to be `'static`.
1464    ///
1465    /// This function is mainly useful for data that lives for the remainder of
1466    /// the program's life. Dropping the returned reference will cause a memory
1467    /// leak. If this is not acceptable, the reference should first be wrapped
1468    /// with the [`Box::from_raw`] function producing a `Box`. This `Box` can
1469    /// then be dropped which will properly destroy `T` and release the
1470    /// allocated memory.
1471    ///
1472    /// Note: this is an associated function, which means that you have
1473    /// to call it as `Box::leak(b)` instead of `b.leak()`. This
1474    /// is so that there is no conflict with a method on the inner type.
1475    ///
1476    /// # Examples
1477    ///
1478    /// Simple usage:
1479    ///
1480    /// ```
1481    /// use allocator_api2::boxed::Box;
1482    ///
1483    /// let x = Box::new(41);
1484    /// let static_ref: &'static mut usize = Box::leak(x);
1485    /// *static_ref += 1;
1486    /// assert_eq!(*static_ref, 42);
1487    /// ```
1488    ///
1489    /// Unsized data:
1490    ///
1491    /// ```
1492    /// use allocator_api2::{vec, boxed::Box};
1493    ///
1494    /// let x = vec![1, 2, 3].into_boxed_slice();
1495    /// let static_ref = Box::leak(x);
1496    /// static_ref[0] = 4;
1497    /// assert_eq!(*static_ref, [4, 2, 3]);
1498    /// ```
1499    #[inline(always)]
1500    pub fn leak<'a>(b: Self) -> &'a mut T
1501    where
1502        A: 'a,
1503    {
1504        unsafe { &mut *mem::ManuallyDrop::new(b).0.as_ptr() }
1505    }
1506
1507    /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
1508    /// `*boxed` will be pinned in memory and unable to be moved.
1509    ///
1510    /// This conversion does not allocate on the heap and happens in place.
1511    ///
1512    /// This is also available via [`From`].
1513    ///
1514    /// Constructing and pinning a `Box` with <code>Box::into_pin([Box::new]\(x))</code>
1515    /// can also be written more concisely using <code>[Box::pin]\(x)</code>.
1516    /// This `into_pin` method is useful if you already have a `Box<T>`, or you are
1517    /// constructing a (pinned) `Box` in a different way than with [`Box::new`].
1518    ///
1519    /// # Notes
1520    ///
1521    /// It's not recommended that crates add an impl like `From<Box<T>> for Pin<T>`,
1522    /// as it'll introduce an ambiguity when calling `Pin::from`.
1523    /// A demonstration of such a poor impl is shown below.
1524    ///
1525    /// ```compile_fail
1526    /// # use std::pin::Pin;
1527    /// use allocator_api2::boxed::Box;
1528    ///
1529    /// struct Foo; // A type defined in this crate.
1530    /// impl From<Box<()>> for Pin<Foo> {
1531    ///     fn from(_: Box<()>) -> Pin<Foo> {
1532    ///         Pin::new(Foo)
1533    ///     }
1534    /// }
1535    ///
1536    /// let foo = Box::new(());
1537    /// let bar = Pin::from(foo);
1538    /// ```
1539    #[inline(always)]
1540    pub fn into_pin(boxed: Self) -> Pin<Self>
1541    where
1542        A: 'static,
1543    {
1544        // It's not possible to move or replace the insides of a `Pin<Box<T>>`
1545        // when `T: !Unpin`, so it's safe to pin it directly without any
1546        // additional requirements.
1547        unsafe { Pin::new_unchecked(boxed) }
1548    }
1549}
1550
1551impl<T: ?Sized, A: Allocator> Drop for Box<T, A> {
1552    #[inline(always)]
1553    fn drop(&mut self) {
1554        let layout = Layout::for_value::<T>(&**self);
1555        unsafe {
1556            ptr::drop_in_place(self.0.as_mut());
1557            self.1.deallocate(self.0.as_non_null_ptr().cast(), layout);
1558        }
1559    }
1560}
1561
1562#[cfg(not(no_global_oom_handling))]
1563impl<T: Default> Default for Box<T> {
1564    /// Creates a `Box<T>`, with the `Default` value for T.
1565    #[inline(always)]
1566    fn default() -> Self {
1567        Box::new(T::default())
1568    }
1569}
1570
1571impl<T, A: Allocator + Default> Default for Box<[T], A> {
1572    #[inline(always)]
1573    fn default() -> Self {
1574        let ptr: NonNull<[T]> = NonNull::<[T; 0]>::dangling();
1575        Box(unsafe { Unique::new_unchecked(ptr.as_ptr()) }, A::default())
1576    }
1577}
1578
1579impl<A: Allocator + Default> Default for Box<str, A> {
1580    #[inline(always)]
1581    fn default() -> Self {
1582        // SAFETY: This is the same as `Unique::cast<U>` but with an unsized `U = str`.
1583        let ptr: Unique<str> = unsafe {
1584            let bytes: NonNull<[u8]> = NonNull::<[u8; 0]>::dangling();
1585            Unique::new_unchecked(bytes.as_ptr() as *mut str)
1586        };
1587        Box(ptr, A::default())
1588    }
1589}
1590
1591#[cfg(not(no_global_oom_handling))]
1592impl<T: Clone, A: Allocator + Clone> Clone for Box<T, A> {
1593    /// Returns a new box with a `clone()` of this box's contents.
1594    ///
1595    /// # Examples
1596    ///
1597    /// ```
1598    /// use allocator_api2::boxed::Box;
1599    ///
1600    /// let x = Box::new(5);
1601    /// let y = x.clone();
1602    ///
1603    /// // The value is the same
1604    /// assert_eq!(x, y);
1605    ///
1606    /// // But they are unique objects
1607    /// assert_ne!(&*x as *const i32, &*y as *const i32);
1608    /// ```
1609    #[inline(always)]
1610    fn clone(&self) -> Self {
1611        // Pre-allocate memory to allow writing the cloned value directly.
1612        let mut boxed = Self::new_uninit_in(self.1.clone());
1613        unsafe {
1614            boxed.write((**self).clone());
1615            boxed.assume_init()
1616        }
1617    }
1618
1619    /// Copies `source`'s contents into `self` without creating a new allocation.
1620    ///
1621    /// # Examples
1622    ///
1623    /// ```
1624    /// use allocator_api2::boxed::Box;
1625    ///
1626    /// let x = Box::new(5);
1627    /// let mut y = Box::new(10);
1628    /// let yp: *const i32 = &*y;
1629    ///
1630    /// y.clone_from(&x);
1631    ///
1632    /// // The value is the same
1633    /// assert_eq!(x, y);
1634    ///
1635    /// // And no allocation occurred
1636    /// assert_eq!(yp, &*y);
1637    /// ```
1638    #[inline(always)]
1639    fn clone_from(&mut self, source: &Self) {
1640        (**self).clone_from(&(**source));
1641    }
1642}
1643
1644#[cfg(not(no_global_oom_handling))]
1645impl Clone for Box<str> {
1646    #[inline(always)]
1647    fn clone(&self) -> Self {
1648        // this makes a copy of the data
1649        let buf: Box<[u8]> = self.as_bytes().into();
1650        unsafe { Box::from_raw(Box::into_raw(buf) as *mut str) }
1651    }
1652}
1653
1654impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Box<T, A> {
1655    #[inline(always)]
1656    fn eq(&self, other: &Self) -> bool {
1657        PartialEq::eq(&**self, &**other)
1658    }
1659    #[inline(always)]
1660    fn ne(&self, other: &Self) -> bool {
1661        PartialEq::ne(&**self, &**other)
1662    }
1663}
1664
1665impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Box<T, A> {
1666    #[inline(always)]
1667    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1668        PartialOrd::partial_cmp(&**self, &**other)
1669    }
1670    #[inline(always)]
1671    fn lt(&self, other: &Self) -> bool {
1672        PartialOrd::lt(&**self, &**other)
1673    }
1674    #[inline(always)]
1675    fn le(&self, other: &Self) -> bool {
1676        PartialOrd::le(&**self, &**other)
1677    }
1678    #[inline(always)]
1679    fn ge(&self, other: &Self) -> bool {
1680        PartialOrd::ge(&**self, &**other)
1681    }
1682    #[inline(always)]
1683    fn gt(&self, other: &Self) -> bool {
1684        PartialOrd::gt(&**self, &**other)
1685    }
1686}
1687
1688impl<T: ?Sized + Ord, A: Allocator> Ord for Box<T, A> {
1689    #[inline(always)]
1690    fn cmp(&self, other: &Self) -> Ordering {
1691        Ord::cmp(&**self, &**other)
1692    }
1693}
1694
1695impl<T: ?Sized + Eq, A: Allocator> Eq for Box<T, A> {}
1696
1697impl<T: ?Sized + Hash, A: Allocator> Hash for Box<T, A> {
1698    #[inline(always)]
1699    fn hash<H: Hasher>(&self, state: &mut H) {
1700        (**self).hash(state);
1701    }
1702}
1703
1704impl<T: ?Sized + Hasher, A: Allocator> Hasher for Box<T, A> {
1705    #[inline(always)]
1706    fn finish(&self) -> u64 {
1707        (**self).finish()
1708    }
1709    #[inline(always)]
1710    fn write(&mut self, bytes: &[u8]) {
1711        (**self).write(bytes)
1712    }
1713    #[inline(always)]
1714    fn write_u8(&mut self, i: u8) {
1715        (**self).write_u8(i)
1716    }
1717    #[inline(always)]
1718    fn write_u16(&mut self, i: u16) {
1719        (**self).write_u16(i)
1720    }
1721    #[inline(always)]
1722    fn write_u32(&mut self, i: u32) {
1723        (**self).write_u32(i)
1724    }
1725    #[inline(always)]
1726    fn write_u64(&mut self, i: u64) {
1727        (**self).write_u64(i)
1728    }
1729    #[inline(always)]
1730    fn write_u128(&mut self, i: u128) {
1731        (**self).write_u128(i)
1732    }
1733    #[inline(always)]
1734    fn write_usize(&mut self, i: usize) {
1735        (**self).write_usize(i)
1736    }
1737    #[inline(always)]
1738    fn write_i8(&mut self, i: i8) {
1739        (**self).write_i8(i)
1740    }
1741    #[inline(always)]
1742    fn write_i16(&mut self, i: i16) {
1743        (**self).write_i16(i)
1744    }
1745    #[inline(always)]
1746    fn write_i32(&mut self, i: i32) {
1747        (**self).write_i32(i)
1748    }
1749    #[inline(always)]
1750    fn write_i64(&mut self, i: i64) {
1751        (**self).write_i64(i)
1752    }
1753    #[inline(always)]
1754    fn write_i128(&mut self, i: i128) {
1755        (**self).write_i128(i)
1756    }
1757    #[inline(always)]
1758    fn write_isize(&mut self, i: isize) {
1759        (**self).write_isize(i)
1760    }
1761}
1762
1763#[cfg(not(no_global_oom_handling))]
1764impl<T> From<T> for Box<T> {
1765    /// Converts a `T` into a `Box<T>`
1766    ///
1767    /// The conversion allocates on the heap and moves `t`
1768    /// from the stack into it.
1769    ///
1770    /// # Examples
1771    ///
1772    /// ```
1773    /// use allocator_api2::boxed::Box;
1774    ///
1775    /// let x = 5;
1776    /// let boxed = Box::new(5);
1777    ///
1778    /// assert_eq!(Box::from(x), boxed);
1779    /// ```
1780    #[inline(always)]
1781    fn from(t: T) -> Self {
1782        Box::new(t)
1783    }
1784}
1785
1786impl<T: ?Sized, A: Allocator> From<Box<T, A>> for Pin<Box<T, A>>
1787where
1788    A: 'static,
1789{
1790    /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
1791    /// `*boxed` will be pinned in memory and unable to be moved.
1792    ///
1793    /// This conversion does not allocate on the heap and happens in place.
1794    ///
1795    /// This is also available via [`Box::into_pin`].
1796    ///
1797    /// Constructing and pinning a `Box` with <code><Pin<Box\<T>>>::from([Box::new]\(x))</code>
1798    /// can also be written more concisely using <code>[Box::pin]\(x)</code>.
1799    /// This `From` implementation is useful if you already have a `Box<T>`, or you are
1800    /// constructing a (pinned) `Box` in a different way than with [`Box::new`].
1801    #[inline(always)]
1802    fn from(boxed: Box<T, A>) -> Self {
1803        Box::into_pin(boxed)
1804    }
1805}
1806
1807#[cfg(not(no_global_oom_handling))]
1808impl<T: Copy, A: Allocator + Default> From<&[T]> for Box<[T], A> {
1809    /// Converts a `&[T]` into a `Box<[T]>`
1810    ///
1811    /// This conversion allocates on the heap
1812    /// and performs a copy of `slice` and its contents.
1813    ///
1814    /// # Examples
1815    /// ```
1816    /// use allocator_api2::boxed::Box;
1817    ///
1818    /// // create a &[u8] which will be used to create a Box<[u8]>
1819    /// let slice: &[u8] = &[104, 101, 108, 108, 111];
1820    /// let boxed_slice: Box<[u8]> = Box::from(slice);
1821    ///
1822    /// println!("{boxed_slice:?}");
1823    /// ```
1824    #[inline(always)]
1825    fn from(slice: &[T]) -> Box<[T], A> {
1826        let len = slice.len();
1827        let buf = RawVec::with_capacity_in(len, A::default());
1828        unsafe {
1829            ptr::copy_nonoverlapping(slice.as_ptr(), buf.ptr(), len);
1830            buf.into_box(slice.len()).assume_init()
1831        }
1832    }
1833}
1834
1835#[cfg(not(no_global_oom_handling))]
1836impl<A: Allocator + Default> From<&str> for Box<str, A> {
1837    /// Converts a `&str` into a `Box<str>`
1838    ///
1839    /// This conversion allocates on the heap
1840    /// and performs a copy of `s`.
1841    ///
1842    /// # Examples
1843    ///
1844    /// ```
1845    /// use allocator_api2::boxed::Box;
1846    ///
1847    /// let boxed: Box<str> = Box::from("hello");
1848    /// println!("{boxed}");
1849    /// ```
1850    #[inline(always)]
1851    fn from(s: &str) -> Box<str, A> {
1852        let (raw, alloc) = Box::into_raw_with_allocator(Box::<[u8], A>::from(s.as_bytes()));
1853        unsafe { Box::from_raw_in(raw as *mut str, alloc) }
1854    }
1855}
1856
1857impl<A: Allocator> From<Box<str, A>> for Box<[u8], A> {
1858    /// Converts a `Box<str>` into a `Box<[u8]>`
1859    ///
1860    /// This conversion does not allocate on the heap and happens in place.
1861    ///
1862    /// # Examples
1863    /// ```
1864    /// use allocator_api2::boxed::Box;
1865    ///
1866    /// // create a Box<str> which will be used to create a Box<[u8]>
1867    /// let boxed: Box<str> = Box::from("hello");
1868    /// let boxed_str: Box<[u8]> = Box::from(boxed);
1869    ///
1870    /// // create a &[u8] which will be used to create a Box<[u8]>
1871    /// let slice: &[u8] = &[104, 101, 108, 108, 111];
1872    /// let boxed_slice = Box::from(slice);
1873    ///
1874    /// assert_eq!(boxed_slice, boxed_str);
1875    /// ```
1876    #[inline(always)]
1877    fn from(s: Box<str, A>) -> Self {
1878        let (raw, alloc) = Box::into_raw_with_allocator(s);
1879        unsafe { Box::from_raw_in(raw as *mut [u8], alloc) }
1880    }
1881}
1882
1883impl<T, A: Allocator, const N: usize> Box<[T; N], A> {
1884    #[inline(always)]
1885    pub fn slice(b: Self) -> Box<[T], A> {
1886        let (ptr, alloc) = Box::into_raw_with_allocator(b);
1887        unsafe { Box::from_raw_in(ptr, alloc) }
1888    }
1889
1890    pub fn into_vec(self) -> Vec<T, A>
1891    where
1892        A: Allocator,
1893    {
1894        unsafe {
1895            let (b, alloc) = Box::into_raw_with_allocator(self);
1896            Vec::from_raw_parts_in(b as *mut T, N, N, alloc)
1897        }
1898    }
1899}
1900
1901#[cfg(not(no_global_oom_handling))]
1902impl<T, const N: usize> From<[T; N]> for Box<[T]> {
1903    /// Converts a `[T; N]` into a `Box<[T]>`
1904    ///
1905    /// This conversion moves the array to newly heap-allocated memory.
1906    ///
1907    /// # Examples
1908    ///
1909    /// ```
1910    /// use allocator_api2::boxed::Box;
1911    ///
1912    /// let boxed: Box<[u8]> = Box::from([4, 2]);
1913    /// println!("{boxed:?}");
1914    /// ```
1915    #[inline(always)]
1916    fn from(array: [T; N]) -> Box<[T]> {
1917        Box::slice(Box::new(array))
1918    }
1919}
1920
1921impl<T, A: Allocator, const N: usize> TryFrom<Box<[T], A>> for Box<[T; N], A> {
1922    type Error = Box<[T], A>;
1923
1924    /// Attempts to convert a `Box<[T]>` into a `Box<[T; N]>`.
1925    ///
1926    /// The conversion occurs in-place and does not require a
1927    /// new memory allocation.
1928    ///
1929    /// # Errors
1930    ///
1931    /// Returns the old `Box<[T]>` in the `Err` variant if
1932    /// `boxed_slice.len()` does not equal `N`.
1933    #[inline(always)]
1934    fn try_from(boxed_slice: Box<[T], A>) -> Result<Self, Self::Error> {
1935        if boxed_slice.len() == N {
1936            let (ptr, alloc) = Box::into_raw_with_allocator(boxed_slice);
1937            Ok(unsafe { Box::from_raw_in(ptr as *mut [T; N], alloc) })
1938        } else {
1939            Err(boxed_slice)
1940        }
1941    }
1942}
1943
1944impl<A: Allocator> Box<dyn Any, A> {
1945    /// Attempt to downcast the box to a concrete type.
1946    ///
1947    /// # Examples
1948    ///
1949    /// ```
1950    /// use std::any::Any;
1951    ///
1952    /// fn print_if_string(value: Box<dyn Any>) {
1953    ///     if let Ok(string) = value.downcast::<String>() {
1954    ///         println!("String ({}): {}", string.len(), string);
1955    ///     }
1956    /// }
1957    ///
1958    /// let my_string = "Hello World".to_string();
1959    /// print_if_string(Box::new(my_string));
1960    /// print_if_string(Box::new(0i8));
1961    /// ```
1962    #[inline(always)]
1963    pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
1964        if self.is::<T>() {
1965            unsafe { Ok(self.downcast_unchecked::<T>()) }
1966        } else {
1967            Err(self)
1968        }
1969    }
1970
1971    /// Downcasts the box to a concrete type.
1972    ///
1973    /// For a safe alternative see [`downcast`].
1974    ///
1975    /// # Examples
1976    ///
1977    /// ```
1978    /// use std::any::Any;
1979    ///
1980    /// use allocator_api2::{boxed::Box, unsize_box};
1981    ///
1982    /// let x: Box<dyn Any> = unsize_box!(Box::new(1_usize));
1983    ///
1984    /// unsafe {
1985    ///     assert_eq!(*x.downcast_unchecked::<usize>(), 1);
1986    /// }
1987    /// ```
1988    ///
1989    /// # Safety
1990    ///
1991    /// The contained value must be of type `T`. Calling this method
1992    /// with the incorrect type is *undefined behavior*.
1993    ///
1994    /// [`downcast`]: Self::downcast
1995    #[inline(always)]
1996    pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
1997        debug_assert!(self.is::<T>());
1998        unsafe {
1999            let (raw, alloc): (*mut dyn Any, _) = Box::into_raw_with_allocator(self);
2000            Box::from_raw_in(raw as *mut T, alloc)
2001        }
2002    }
2003}
2004
2005impl<A: Allocator> Box<dyn Any + Send, A> {
2006    /// Attempt to downcast the box to a concrete type.
2007    ///
2008    /// # Examples
2009    ///
2010    /// ```
2011    /// use std::any::Any;
2012    ///
2013    /// use allocator_api2::{boxed::Box, unsize_box};
2014    ///
2015    /// fn print_if_string(value: Box<dyn Any + Send>) {
2016    ///     if let Ok(string) = value.downcast::<String>() {
2017    ///         println!("String ({}): {}", string.len(), string);
2018    ///     }
2019    /// }
2020    ///
2021    /// let my_string = "Hello World".to_string();
2022    /// print_if_string(unsize_box!(Box::new(my_string)));
2023    /// print_if_string(unsize_box!(Box::new(0i8)));
2024    /// ```
2025    #[inline(always)]
2026    pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
2027        if self.is::<T>() {
2028            unsafe { Ok(self.downcast_unchecked::<T>()) }
2029        } else {
2030            Err(self)
2031        }
2032    }
2033
2034    /// Downcasts the box to a concrete type.
2035    ///
2036    /// For a safe alternative see [`downcast`].
2037    ///
2038    /// # Examples
2039    ///
2040    /// ```
2041    /// use std::any::Any;
2042    ///
2043    /// use allocator_api2::{boxed::Box, unsize_box};
2044    ///
2045    /// let x: Box<dyn Any + Send> = unsize_box!(Box::new(1_usize));
2046    ///
2047    /// unsafe {
2048    ///     assert_eq!(*x.downcast_unchecked::<usize>(), 1);
2049    /// }
2050    /// ```
2051    ///
2052    /// # Safety
2053    ///
2054    /// The contained value must be of type `T`. Calling this method
2055    /// with the incorrect type is *undefined behavior*.
2056    ///
2057    /// [`downcast`]: Self::downcast
2058    #[inline(always)]
2059    pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
2060        debug_assert!(self.is::<T>());
2061        unsafe {
2062            let (raw, alloc): (*mut (dyn Any + Send), _) = Box::into_raw_with_allocator(self);
2063            Box::from_raw_in(raw as *mut T, alloc)
2064        }
2065    }
2066}
2067
2068impl<A: Allocator> Box<dyn Any + Send + Sync, A> {
2069    /// Attempt to downcast the box to a concrete type.
2070    ///
2071    /// # Examples
2072    ///
2073    /// ```
2074    /// use std::any::Any;
2075    ///
2076    /// use allocator_api2::{boxed::Box, unsize_box};
2077    ///
2078    /// fn print_if_string(value: Box<dyn Any + Send + Sync>) {
2079    ///     if let Ok(string) = value.downcast::<String>() {
2080    ///         println!("String ({}): {}", string.len(), string);
2081    ///     }
2082    /// }
2083    ///
2084    /// let my_string = "Hello World".to_string();
2085    /// print_if_string(unsize_box!(Box::new(my_string)));
2086    /// print_if_string(unsize_box!(Box::new(0i8)));
2087    /// ```
2088    #[inline(always)]
2089    pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
2090        if self.is::<T>() {
2091            unsafe { Ok(self.downcast_unchecked::<T>()) }
2092        } else {
2093            Err(self)
2094        }
2095    }
2096
2097    /// Downcasts the box to a concrete type.
2098    ///
2099    /// For a safe alternative see [`downcast`].
2100    ///
2101    /// # Examples
2102    ///
2103    /// ```
2104    /// use std::any::Any;
2105    ///
2106    /// use allocator_api2::{boxed::Box, unsize_box};
2107    ///
2108    /// let x: Box<dyn Any + Send + Sync> = unsize_box!(Box::new(1_usize));
2109    ///
2110    /// unsafe {
2111    ///     assert_eq!(*x.downcast_unchecked::<usize>(), 1);
2112    /// }
2113    /// ```
2114    ///
2115    /// # Safety
2116    ///
2117    /// The contained value must be of type `T`. Calling this method
2118    /// with the incorrect type is *undefined behavior*.
2119    ///
2120    /// [`downcast`]: Self::downcast
2121    #[inline(always)]
2122    pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
2123        debug_assert!(self.is::<T>());
2124        unsafe {
2125            let (raw, alloc): (*mut (dyn Any + Send + Sync), _) =
2126                Box::into_raw_with_allocator(self);
2127            Box::from_raw_in(raw as *mut T, alloc)
2128        }
2129    }
2130}
2131
2132impl<T: fmt::Display + ?Sized, A: Allocator> fmt::Display for Box<T, A> {
2133    #[inline(always)]
2134    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2135        fmt::Display::fmt(&**self, f)
2136    }
2137}
2138
2139impl<T: fmt::Debug + ?Sized, A: Allocator> fmt::Debug for Box<T, A> {
2140    #[inline(always)]
2141    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2142        fmt::Debug::fmt(&**self, f)
2143    }
2144}
2145
2146impl<T: ?Sized, A: Allocator> fmt::Pointer for Box<T, A> {
2147    #[inline(always)]
2148    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2149        // It's not possible to extract the inner Uniq directly from the Box,
2150        // instead we cast it to a *const which aliases the Unique
2151        let ptr: *const T = &**self;
2152        fmt::Pointer::fmt(&ptr, f)
2153    }
2154}
2155
2156impl<T: ?Sized, A: Allocator> Deref for Box<T, A> {
2157    type Target = T;
2158
2159    #[inline(always)]
2160    fn deref(&self) -> &T {
2161        unsafe { self.0.as_ref() }
2162    }
2163}
2164
2165impl<T: ?Sized, A: Allocator> DerefMut for Box<T, A> {
2166    #[inline(always)]
2167    fn deref_mut(&mut self) -> &mut T {
2168        unsafe { self.0.as_mut() }
2169    }
2170}
2171
2172impl<I: Iterator + ?Sized, A: Allocator> Iterator for Box<I, A> {
2173    type Item = I::Item;
2174
2175    #[inline(always)]
2176    fn next(&mut self) -> Option<I::Item> {
2177        (**self).next()
2178    }
2179
2180    #[inline(always)]
2181    fn size_hint(&self) -> (usize, Option<usize>) {
2182        (**self).size_hint()
2183    }
2184
2185    #[inline(always)]
2186    fn nth(&mut self, n: usize) -> Option<I::Item> {
2187        (**self).nth(n)
2188    }
2189
2190    #[inline(always)]
2191    fn last(self) -> Option<I::Item> {
2192        BoxIter::last(self)
2193    }
2194}
2195
2196trait BoxIter {
2197    type Item;
2198    fn last(self) -> Option<Self::Item>;
2199}
2200
2201impl<I: Iterator + ?Sized, A: Allocator> BoxIter for Box<I, A> {
2202    type Item = I::Item;
2203
2204    #[inline(always)]
2205    fn last(self) -> Option<I::Item> {
2206        #[inline(always)]
2207        fn some<T>(_: Option<T>, x: T) -> Option<T> {
2208            Some(x)
2209        }
2210
2211        self.fold(None, some)
2212    }
2213}
2214
2215impl<I: DoubleEndedIterator + ?Sized, A: Allocator> DoubleEndedIterator for Box<I, A> {
2216    #[inline(always)]
2217    fn next_back(&mut self) -> Option<I::Item> {
2218        (**self).next_back()
2219    }
2220    #[inline(always)]
2221    fn nth_back(&mut self, n: usize) -> Option<I::Item> {
2222        (**self).nth_back(n)
2223    }
2224}
2225
2226impl<I: ExactSizeIterator + ?Sized, A: Allocator> ExactSizeIterator for Box<I, A> {
2227    #[inline(always)]
2228    fn len(&self) -> usize {
2229        (**self).len()
2230    }
2231}
2232
2233impl<I: FusedIterator + ?Sized, A: Allocator> FusedIterator for Box<I, A> {}
2234
2235#[cfg(not(no_global_oom_handling))]
2236impl<I> FromIterator<I> for Box<[I]> {
2237    #[inline(always)]
2238    fn from_iter<T: IntoIterator<Item = I>>(iter: T) -> Self {
2239        iter.into_iter().collect::<Vec<_>>().into_boxed_slice()
2240    }
2241}
2242
2243#[cfg(not(no_global_oom_handling))]
2244impl<T: Clone, A: Allocator + Clone> Clone for Box<[T], A> {
2245    #[inline(always)]
2246    fn clone(&self) -> Self {
2247        let alloc = Box::allocator(self).clone();
2248        let mut vec = Vec::with_capacity_in(self.len(), alloc);
2249        vec.extend_from_slice(self);
2250        vec.into_boxed_slice()
2251    }
2252
2253    #[inline(always)]
2254    fn clone_from(&mut self, other: &Self) {
2255        if self.len() == other.len() {
2256            self.clone_from_slice(other);
2257        } else {
2258            *self = other.clone();
2259        }
2260    }
2261}
2262
2263impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for Box<T, A> {
2264    #[inline(always)]
2265    fn borrow(&self) -> &T {
2266        self
2267    }
2268}
2269
2270impl<T: ?Sized, A: Allocator> borrow::BorrowMut<T> for Box<T, A> {
2271    #[inline(always)]
2272    fn borrow_mut(&mut self) -> &mut T {
2273        self
2274    }
2275}
2276
2277impl<T: ?Sized, A: Allocator> AsRef<T> for Box<T, A> {
2278    #[inline(always)]
2279    fn as_ref(&self) -> &T {
2280        self
2281    }
2282}
2283
2284impl<T: ?Sized, A: Allocator> AsMut<T> for Box<T, A> {
2285    #[inline(always)]
2286    fn as_mut(&mut self) -> &mut T {
2287        self
2288    }
2289}
2290
2291/* Nota bene
2292 *
2293 *  We could have chosen not to add this impl, and instead have written a
2294 *  function of Pin<Box<T>> to Pin<T>. Such a function would not be sound,
2295 *  because Box<T> implements Unpin even when T does not, as a result of
2296 *  this impl.
2297 *
2298 *  We chose this API instead of the alternative for a few reasons:
2299 *      - Logically, it is helpful to understand pinning in regard to the
2300 *        memory region being pointed to. For this reason none of the
2301 *        standard library pointer types support projecting through a pin
2302 *        (Box<T> is the only pointer type in std for which this would be
2303 *        safe.)
2304 *      - It is in practice very useful to have Box<T> be unconditionally
2305 *        Unpin because of trait objects, for which the structural auto
2306 *        trait functionality does not apply (e.g., Box<dyn Foo> would
2307 *        otherwise not be Unpin).
2308 *
2309 *  Another type with the same semantics as Box but only a conditional
2310 *  implementation of `Unpin` (where `T: Unpin`) would be valid/safe, and
2311 *  could have a method to project a Pin<T> from it.
2312 */
2313impl<T: ?Sized, A: Allocator> Unpin for Box<T, A> where A: 'static {}
2314
2315impl<F: ?Sized + Future + Unpin, A: Allocator> Future for Box<F, A>
2316where
2317    A: 'static,
2318{
2319    type Output = F::Output;
2320
2321    #[inline(always)]
2322    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
2323        F::poll(Pin::new(&mut *self), cx)
2324    }
2325}
2326
2327#[cfg(feature = "std")]
2328mod error {
2329    use std::error::Error;
2330
2331    use super::Box;
2332
2333    #[cfg(not(no_global_oom_handling))]
2334    impl<'a, E: Error + 'a> From<E> for Box<dyn Error + 'a> {
2335        /// Converts a type of [`Error`] into a box of dyn [`Error`].
2336        ///
2337        /// # Examples
2338        ///
2339        /// ```
2340        /// use std::error::Error;
2341        /// use std::fmt;
2342        /// use std::mem;
2343        ///
2344        /// use allocator_api2::boxed::Box;
2345        ///
2346        /// #[derive(Debug)]
2347        /// struct AnError;
2348        ///
2349        /// impl fmt::Display for AnError {
2350        ///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2351        ///         write!(f, "An error")
2352        ///     }
2353        /// }
2354        ///
2355        /// impl Error for AnError {}
2356        ///
2357        /// let an_error = AnError;
2358        /// assert!(0 == mem::size_of_val(&an_error));
2359        /// let a_boxed_error = Box::<dyn Error>::from(an_error);
2360        /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error))
2361        /// ```
2362        #[inline(always)]
2363        fn from(err: E) -> Box<dyn Error + 'a> {
2364            unsafe { Box::from_raw(Box::leak(Box::new(err))) }
2365        }
2366    }
2367
2368    #[cfg(not(no_global_oom_handling))]
2369    impl<'a, E: Error + Send + Sync + 'a> From<E> for Box<dyn Error + Send + Sync + 'a> {
2370        /// Converts a type of [`Error`] + [`Send`] + [`Sync`] into a box of
2371        /// dyn [`Error`] + [`Send`] + [`Sync`].
2372        ///
2373        /// # Examples
2374        ///
2375        /// ```
2376        /// use std::error::Error;
2377        /// use std::fmt;
2378        /// use std::mem;
2379        ///
2380        /// use allocator_api2::boxed::Box;
2381        ///
2382        /// #[derive(Debug)]
2383        /// struct AnError;
2384        ///
2385        /// impl fmt::Display for AnError {
2386        ///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2387        ///         write!(f, "An error")
2388        ///     }
2389        /// }
2390        ///
2391        /// impl Error for AnError {}
2392        ///
2393        /// unsafe impl Send for AnError {}
2394        ///
2395        /// unsafe impl Sync for AnError {}
2396        ///
2397        /// let an_error = AnError;
2398        /// assert!(0 == mem::size_of_val(&an_error));
2399        /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(an_error);
2400        /// assert!(
2401        ///     mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error))
2402        /// ```
2403        #[inline(always)]
2404        fn from(err: E) -> Box<dyn Error + Send + Sync + 'a> {
2405            unsafe { Box::from_raw(Box::leak(Box::new(err))) }
2406        }
2407    }
2408
2409    impl<T: Error> Error for Box<T> {
2410        #[inline(always)]
2411        fn source(&self) -> Option<&(dyn Error + 'static)> {
2412            Error::source(&**self)
2413        }
2414    }
2415}
2416
2417#[cfg(feature = "std")]
2418impl<R: std::io::Read + ?Sized, A: Allocator> std::io::Read for Box<R, A> {
2419    #[inline]
2420    fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
2421        (**self).read(buf)
2422    }
2423
2424    #[inline]
2425    fn read_to_end(&mut self, buf: &mut std::vec::Vec<u8>) -> std::io::Result<usize> {
2426        (**self).read_to_end(buf)
2427    }
2428
2429    #[inline]
2430    fn read_to_string(&mut self, buf: &mut String) -> std::io::Result<usize> {
2431        (**self).read_to_string(buf)
2432    }
2433
2434    #[inline]
2435    fn read_exact(&mut self, buf: &mut [u8]) -> std::io::Result<()> {
2436        (**self).read_exact(buf)
2437    }
2438}
2439
2440#[cfg(feature = "std")]
2441impl<W: std::io::Write + ?Sized, A: Allocator> std::io::Write for Box<W, A> {
2442    #[inline]
2443    fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
2444        (**self).write(buf)
2445    }
2446
2447    #[inline]
2448    fn flush(&mut self) -> std::io::Result<()> {
2449        (**self).flush()
2450    }
2451
2452    #[inline]
2453    fn write_all(&mut self, buf: &[u8]) -> std::io::Result<()> {
2454        (**self).write_all(buf)
2455    }
2456
2457    #[inline]
2458    fn write_fmt(&mut self, fmt: fmt::Arguments<'_>) -> std::io::Result<()> {
2459        (**self).write_fmt(fmt)
2460    }
2461}
2462
2463#[cfg(feature = "std")]
2464impl<S: std::io::Seek + ?Sized, A: Allocator> std::io::Seek for Box<S, A> {
2465    #[inline]
2466    fn seek(&mut self, pos: std::io::SeekFrom) -> std::io::Result<u64> {
2467        (**self).seek(pos)
2468    }
2469
2470    #[inline]
2471    fn stream_position(&mut self) -> std::io::Result<u64> {
2472        (**self).stream_position()
2473    }
2474}
2475
2476#[cfg(feature = "std")]
2477impl<B: std::io::BufRead + ?Sized, A: Allocator> std::io::BufRead for Box<B, A> {
2478    #[inline]
2479    fn fill_buf(&mut self) -> std::io::Result<&[u8]> {
2480        (**self).fill_buf()
2481    }
2482
2483    #[inline]
2484    fn consume(&mut self, amt: usize) {
2485        (**self).consume(amt)
2486    }
2487
2488    #[inline]
2489    fn read_until(&mut self, byte: u8, buf: &mut std::vec::Vec<u8>) -> std::io::Result<usize> {
2490        (**self).read_until(byte, buf)
2491    }
2492
2493    #[inline]
2494    fn read_line(&mut self, buf: &mut std::string::String) -> std::io::Result<usize> {
2495        (**self).read_line(buf)
2496    }
2497}
2498
2499#[cfg(feature = "alloc")]
2500impl<A: Allocator> Extend<Box<str, A>> for alloc_crate::string::String {
2501    fn extend<I: IntoIterator<Item = Box<str, A>>>(&mut self, iter: I) {
2502        iter.into_iter().for_each(move |s| self.push_str(&s));
2503    }
2504}
2505
2506#[cfg(not(no_global_oom_handling))]
2507#[cfg(feature = "std")]
2508impl Clone for Box<std::ffi::CStr> {
2509    #[inline]
2510    fn clone(&self) -> Self {
2511        (**self).into()
2512    }
2513}
2514
2515#[cfg(not(no_global_oom_handling))]
2516#[cfg(feature = "std")]
2517impl From<&std::ffi::CStr> for Box<std::ffi::CStr> {
2518    /// Converts a `&CStr` into a `Box<CStr>`,
2519    /// by copying the contents into a newly allocated [`Box`].
2520    fn from(s: &std::ffi::CStr) -> Box<std::ffi::CStr> {
2521        let boxed: Box<[u8]> = Box::from(s.to_bytes_with_nul());
2522        unsafe { Box::from_raw(Box::into_raw(boxed) as *mut std::ffi::CStr) }
2523    }
2524}
2525
2526#[cfg(not(no_global_oom_handling))]
2527#[cfg(all(feature = "fresh-rust", not(feature = "std")))]
2528impl Clone for Box<core::ffi::CStr> {
2529    #[inline]
2530    fn clone(&self) -> Self {
2531        (**self).into()
2532    }
2533}
2534
2535#[cfg(not(no_global_oom_handling))]
2536#[cfg(all(feature = "fresh-rust", not(feature = "std")))]
2537impl From<&core::ffi::CStr> for Box<core::ffi::CStr> {
2538    /// Converts a `&CStr` into a `Box<CStr>`,
2539    /// by copying the contents into a newly allocated [`Box`].
2540    fn from(s: &core::ffi::CStr) -> Box<core::ffi::CStr> {
2541        let boxed: Box<[u8]> = Box::from(s.to_bytes_with_nul());
2542        unsafe { Box::from_raw(Box::into_raw(boxed) as *mut core::ffi::CStr) }
2543    }
2544}
2545
2546#[cfg(feature = "serde")]
2547impl<T, A> serde::Serialize for Box<T, A>
2548where
2549    T: serde::Serialize,
2550    A: Allocator,
2551{
2552    #[inline(always)]
2553    fn serialize<S: serde::ser::Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
2554        (**self).serialize(serializer)
2555    }
2556}
2557
2558#[cfg(feature = "serde")]
2559impl<'de, T, A> serde::Deserialize<'de> for Box<T, A>
2560where
2561    T: serde::Deserialize<'de>,
2562    A: Allocator + Default,
2563{
2564    #[inline(always)]
2565    fn deserialize<D: serde::de::Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error> {
2566        let value = T::deserialize(deserializer)?;
2567        Ok(Box::new_in(value, A::default()))
2568    }
2569}