allocator_api2/
boxed.rs

1//! The `Box<T>` type for heap allocation.
2//!
3//! [`Box<T>`], casually referred to as a 'box', provides the simplest form of
4//! heap allocation in Rust. Boxes provide ownership for this allocation, and
5//! drop their contents when they go out of scope. Boxes also ensure that they
6//! never allocate more than `isize::MAX` bytes.
7//!
8//! # Examples
9//!
10//! Move a value from the stack to the heap by creating a [`Box`]:
11//!
12//! ```
13//! let val: u8 = 5;
14//! let boxed: Box<u8> = Box::new(val);
15//! ```
16//!
17//! Move a value from a [`Box`] back to the stack by [dereferencing]:
18//!
19//! ```
20//! let boxed: Box<u8> = Box::new(5);
21//! let val: u8 = *boxed;
22//! ```
23//!
24//! Creating a recursive data structure:
25//!
26//! ```
27//! #[derive(Debug)]
28//! enum List<T> {
29//!     Cons(T, Box<List<T>>),
30//!     Nil,
31//! }
32//!
33//! let list: List<i32> = List::Cons(1, Box::new(List::Cons(2, Box::new(List::Nil))));
34//! println!("{list:?}");
35//! ```
36//!
37//! This will print `Cons(1, Cons(2, Nil))`.
38//!
39//! Recursive structures must be boxed, because if the definition of `Cons`
40//! looked like this:
41//!
42//! ```compile_fail,E0072
43//! # enum List<T> {
44//! Cons(T, List<T>),
45//! # }
46//! ```
47//!
48//! It wouldn't work. This is because the size of a `List` depends on how many
49//! elements are in the list, and so we don't know how much memory to allocate
50//! for a `Cons`. By introducing a [`Box<T>`], which has a defined size, we know how
51//! big `Cons` needs to be.
52//!
53//! # Memory layout
54//!
55//! For non-zero-sized values, a [`Box`] will use the [`Global`] allocator for
56//! its allocation. It is valid to convert both ways between a [`Box`] and a
57//! raw pointer allocated with the [`Global`] allocator, given that the
58//! [`Layout`] used with the allocator is correct for the type. More precisely,
59//! a `value: *mut T` that has been allocated with the [`Global`] allocator
60//! with `Layout::for_value(&*value)` may be converted into a box using
61//! [`Box::<T>::from_raw(value)`]. Conversely, the memory backing a `value: *mut
62//! T` obtained from [`Box::<T>::into_raw`] may be deallocated using the
63//! [`Global`] allocator with [`Layout::for_value(&*value)`].
64//!
65//! For zero-sized values, the `Box` pointer still has to be [valid] for reads
66//! and writes and sufficiently aligned. In particular, casting any aligned
67//! non-zero integer literal to a raw pointer produces a valid pointer, but a
68//! pointer pointing into previously allocated memory that since got freed is
69//! not valid. The recommended way to build a Box to a ZST if `Box::new` cannot
70//! be used is to use [`ptr::NonNull::dangling`].
71//!
72//! So long as `T: Sized`, a `Box<T>` is guaranteed to be represented
73//! as a single pointer and is also ABI-compatible with C pointers
74//! (i.e. the C type `T*`). This means that if you have extern "C"
75//! Rust functions that will be called from C, you can define those
76//! Rust functions using `Box<T>` types, and use `T*` as corresponding
77//! type on the C side. As an example, consider this C header which
78//! declares functions that create and destroy some kind of `Foo`
79//! value:
80//!
81//! ```c
82//! /* C header */
83//!
84//! /* Returns ownership to the caller */
85//! struct Foo* foo_new(void);
86//!
87//! /* Takes ownership from the caller; no-op when invoked with null */
88//! void foo_delete(struct Foo*);
89//! ```
90//!
91//! These two functions might be implemented in Rust as follows. Here, the
92//! `struct Foo*` type from C is translated to `Box<Foo>`, which captures
93//! the ownership constraints. Note also that the nullable argument to
94//! `foo_delete` is represented in Rust as `Option<Box<Foo>>`, since `Box<Foo>`
95//! cannot be null.
96//!
97//! ```
98//! #[repr(C)]
99//! pub struct Foo;
100//!
101//! #[no_mangle]
102//! pub extern "C" fn foo_new() -> Box<Foo> {
103//!     Box::new(Foo)
104//! }
105//!
106//! #[no_mangle]
107//! pub extern "C" fn foo_delete(_: Option<Box<Foo>>) {}
108//! ```
109//!
110//! Even though `Box<T>` has the same representation and C ABI as a C pointer,
111//! this does not mean that you can convert an arbitrary `T*` into a `Box<T>`
112//! and expect things to work. `Box<T>` values will always be fully aligned,
113//! non-null pointers. Moreover, the destructor for `Box<T>` will attempt to
114//! free the value with the global allocator. In general, the best practice
115//! is to only use `Box<T>` for pointers that originated from the global
116//! allocator.
117//!
118//! **Important.** At least at present, you should avoid using
119//! `Box<T>` types for functions that are defined in C but invoked
120//! from Rust. In those cases, you should directly mirror the C types
121//! as closely as possible. Using types like `Box<T>` where the C
122//! definition is just using `T*` can lead to undefined behavior, as
123//! described in [rust-lang/unsafe-code-guidelines#198][ucg#198].
124//!
125//! # Considerations for unsafe code
126//!
127//! **Warning: This section is not normative and is subject to change, possibly
128//! being relaxed in the future! It is a simplified summary of the rules
129//! currently implemented in the compiler.**
130//!
131//! The aliasing rules for `Box<T>` are the same as for `&mut T`. `Box<T>`
132//! asserts uniqueness over its content. Using raw pointers derived from a box
133//! after that box has been mutated through, moved or borrowed as `&mut T`
134//! is not allowed. For more guidance on working with box from unsafe code, see
135//! [rust-lang/unsafe-code-guidelines#326][ucg#326].
136//!
137//!
138//! [ucg#198]: https://github.com/rust-lang/unsafe-code-guidelines/issues/198
139//! [ucg#326]: https://github.com/rust-lang/unsafe-code-guidelines/issues/326
140//! [dereferencing]: core::ops::Deref
141//! [`Box::<T>::from_raw(value)`]: Box::from_raw
142//! [`Global`]: crate::alloc::Global
143//! [`Layout`]: crate::alloc::Layout
144//! [`Layout::for_value(&*value)`]: crate::alloc::Layout::for_value
145//! [valid]: ptr#safety
146
147use core::any::Any;
148use core::borrow;
149use core::cmp::Ordering;
150use core::convert::{From, TryFrom};
151
152// use core::error::Error;
153use core::fmt;
154use core::future::Future;
155use core::hash::{Hash, Hasher};
156#[cfg(not(no_global_oom_handling))]
157use core::iter::FromIterator;
158use core::iter::{FusedIterator, Iterator};
159use core::marker::Unpin;
160use core::mem::{self, MaybeUninit};
161use core::ops::{Deref, DerefMut};
162use core::pin::Pin;
163use core::ptr::{self, NonNull};
164use core::task::{Context, Poll};
165
166use super::alloc::{AllocError, Allocator, Global, Layout};
167use super::raw_vec::RawVec;
168use super::unique::Unique;
169#[cfg(not(no_global_oom_handling))]
170use super::vec::Vec;
171#[cfg(not(no_global_oom_handling))]
172use alloc_crate::alloc::handle_alloc_error;
173
174/// A pointer type for heap allocation.
175///
176/// See the [module-level documentation](../../std/boxed/index.html) for more.
177pub struct Box<T: ?Sized, A: Allocator = Global>(Unique<T>, A);
178
179// Safety: Box owns both T and A, so sending is safe if
180// sending is safe for T and A.
181unsafe impl<T: ?Sized, A: Allocator> Send for Box<T, A>
182where
183    T: Send,
184    A: Send,
185{
186}
187
188// Safety: Box owns both T and A, so sharing is safe if
189// sharing is safe for T and A.
190unsafe impl<T: ?Sized, A: Allocator> Sync for Box<T, A>
191where
192    T: Sync,
193    A: Sync,
194{
195}
196
197impl<T> Box<T> {
198    /// Allocates memory on the heap and then places `x` into it.
199    ///
200    /// This doesn't actually allocate if `T` is zero-sized.
201    ///
202    /// # Examples
203    ///
204    /// ```
205    /// let five = Box::new(5);
206    /// ```
207    #[cfg(all(not(no_global_oom_handling)))]
208    #[inline(always)]
209    #[must_use]
210    pub fn new(x: T) -> Self {
211        Self::new_in(x, Global)
212    }
213
214    /// Constructs a new box with uninitialized contents.
215    ///
216    /// # Examples
217    ///
218    /// ```
219    /// #![feature(new_uninit)]
220    ///
221    /// let mut five = Box::<u32>::new_uninit();
222    ///
223    /// let five = unsafe {
224    ///     // Deferred initialization:
225    ///     five.as_mut_ptr().write(5);
226    ///
227    ///     five.assume_init()
228    /// };
229    ///
230    /// assert_eq!(*five, 5)
231    /// ```
232    #[cfg(not(no_global_oom_handling))]
233    #[must_use]
234    #[inline(always)]
235    pub fn new_uninit() -> Box<mem::MaybeUninit<T>> {
236        Self::new_uninit_in(Global)
237    }
238
239    /// Constructs a new `Box` with uninitialized contents, with the memory
240    /// being filled with `0` bytes.
241    ///
242    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
243    /// of this method.
244    ///
245    /// # Examples
246    ///
247    /// ```
248    /// #![feature(new_zeroed_alloc)]
249    ///
250    /// let zero = Box::<u32>::new_zeroed();
251    /// let zero = unsafe { zero.assume_init() };
252    ///
253    /// assert_eq!(*zero, 0)
254    /// ```
255    ///
256    /// [zeroed]: mem::MaybeUninit::zeroed
257    #[cfg(not(no_global_oom_handling))]
258    #[must_use]
259    #[inline(always)]
260    pub fn new_zeroed() -> Box<mem::MaybeUninit<T>> {
261        Self::new_zeroed_in(Global)
262    }
263
264    /// Constructs a new `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
265    /// `x` will be pinned in memory and unable to be moved.
266    ///
267    /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin(x)`
268    /// does the same as <code>[Box::into_pin]\([Box::new]\(x))</code>. Consider using
269    /// [`into_pin`](Box::into_pin) if you already have a `Box<T>`, or if you want to
270    /// construct a (pinned) `Box` in a different way than with [`Box::new`].
271    #[cfg(not(no_global_oom_handling))]
272    #[must_use]
273    #[inline(always)]
274    pub fn pin(x: T) -> Pin<Box<T>> {
275        Box::new(x).into()
276    }
277
278    /// Allocates memory on the heap then places `x` into it,
279    /// returning an error if the allocation fails
280    ///
281    /// This doesn't actually allocate if `T` is zero-sized.
282    ///
283    /// # Examples
284    ///
285    /// ```
286    /// #![feature(allocator_api)]
287    ///
288    /// let five = Box::try_new(5)?;
289    /// # Ok::<(), std::alloc::AllocError>(())
290    /// ```
291    #[inline(always)]
292    pub fn try_new(x: T) -> Result<Self, AllocError> {
293        Self::try_new_in(x, Global)
294    }
295
296    /// Constructs a new box with uninitialized contents on the heap,
297    /// returning an error if the allocation fails
298    ///
299    /// # Examples
300    ///
301    /// ```
302    /// #![feature(allocator_api, new_uninit)]
303    ///
304    /// let mut five = Box::<u32>::try_new_uninit()?;
305    ///
306    /// let five = unsafe {
307    ///     // Deferred initialization:
308    ///     five.as_mut_ptr().write(5);
309    ///
310    ///     five.assume_init()
311    /// };
312    ///
313    /// assert_eq!(*five, 5);
314    /// # Ok::<(), std::alloc::AllocError>(())
315    /// ```
316    #[inline(always)]
317    pub fn try_new_uninit() -> Result<Box<mem::MaybeUninit<T>>, AllocError> {
318        Box::try_new_uninit_in(Global)
319    }
320
321    /// Constructs a new `Box` with uninitialized contents, with the memory
322    /// being filled with `0` bytes on the heap
323    ///
324    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
325    /// of this method.
326    ///
327    /// # Examples
328    ///
329    /// ```
330    /// #![feature(allocator_api, new_uninit)]
331    ///
332    /// let zero = Box::<u32>::try_new_zeroed()?;
333    /// let zero = unsafe { zero.assume_init() };
334    ///
335    /// assert_eq!(*zero, 0);
336    /// # Ok::<(), std::alloc::AllocError>(())
337    /// ```
338    ///
339    /// [zeroed]: mem::MaybeUninit::zeroed
340    #[inline(always)]
341    pub fn try_new_zeroed() -> Result<Box<mem::MaybeUninit<T>>, AllocError> {
342        Box::try_new_zeroed_in(Global)
343    }
344}
345
346impl<T, A: Allocator> Box<T, A> {
347    /// Allocates memory in the given allocator then places `x` into it.
348    ///
349    /// This doesn't actually allocate if `T` is zero-sized.
350    ///
351    /// # Examples
352    ///
353    /// ```
354    /// #![feature(allocator_api)]
355    ///
356    /// use std::alloc::System;
357    ///
358    /// let five = Box::new_in(5, System);
359    /// ```
360    #[cfg(not(no_global_oom_handling))]
361    #[must_use]
362    #[inline(always)]
363    pub fn new_in(x: T, alloc: A) -> Self
364    where
365        A: Allocator,
366    {
367        let mut boxed = Self::new_uninit_in(alloc);
368        unsafe {
369            boxed.as_mut_ptr().write(x);
370            boxed.assume_init()
371        }
372    }
373
374    /// Allocates memory in the given allocator then places `x` into it,
375    /// returning an error if the allocation fails
376    ///
377    /// This doesn't actually allocate if `T` is zero-sized.
378    ///
379    /// # Examples
380    ///
381    /// ```
382    /// #![feature(allocator_api)]
383    ///
384    /// use std::alloc::System;
385    ///
386    /// let five = Box::try_new_in(5, System)?;
387    /// # Ok::<(), std::alloc::AllocError>(())
388    /// ```
389    #[inline(always)]
390    pub fn try_new_in(x: T, alloc: A) -> Result<Self, AllocError>
391    where
392        A: Allocator,
393    {
394        let mut boxed = Self::try_new_uninit_in(alloc)?;
395        unsafe {
396            boxed.as_mut_ptr().write(x);
397            Ok(boxed.assume_init())
398        }
399    }
400
401    /// Constructs a new box with uninitialized contents in the provided allocator.
402    ///
403    /// # Examples
404    ///
405    /// ```
406    /// #![feature(allocator_api, new_uninit)]
407    ///
408    /// use std::alloc::System;
409    ///
410    /// let mut five = Box::<u32, _>::new_uninit_in(System);
411    ///
412    /// let five = unsafe {
413    ///     // Deferred initialization:
414    ///     five.as_mut_ptr().write(5);
415    ///
416    ///     five.assume_init()
417    /// };
418    ///
419    /// assert_eq!(*five, 5)
420    /// ```
421    #[cfg(not(no_global_oom_handling))]
422    #[must_use]
423    // #[unstable(feature = "new_uninit", issue = "63291")]
424    #[inline(always)]
425    pub fn new_uninit_in(alloc: A) -> Box<mem::MaybeUninit<T>, A>
426    where
427        A: Allocator,
428    {
429        let layout = Layout::new::<mem::MaybeUninit<T>>();
430        // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable.
431        // That would make code size bigger.
432        match Box::try_new_uninit_in(alloc) {
433            Ok(m) => m,
434            Err(_) => handle_alloc_error(layout),
435        }
436    }
437
438    /// Constructs a new box with uninitialized contents in the provided allocator,
439    /// returning an error if the allocation fails
440    ///
441    /// # Examples
442    ///
443    /// ```
444    /// #![feature(allocator_api, new_uninit)]
445    ///
446    /// use std::alloc::System;
447    ///
448    /// let mut five = Box::<u32, _>::try_new_uninit_in(System)?;
449    ///
450    /// let five = unsafe {
451    ///     // Deferred initialization:
452    ///     five.as_mut_ptr().write(5);
453    ///
454    ///     five.assume_init()
455    /// };
456    ///
457    /// assert_eq!(*five, 5);
458    /// # Ok::<(), std::alloc::AllocError>(())
459    /// ```
460    #[inline(always)]
461    pub fn try_new_uninit_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError>
462    where
463        A: Allocator,
464    {
465        let ptr = if mem::size_of::<T>() == 0 {
466            NonNull::dangling()
467        } else {
468            let layout = Layout::new::<mem::MaybeUninit<T>>();
469            alloc.allocate(layout)?.cast()
470        };
471
472        unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) }
473    }
474
475    /// Constructs a new `Box` with uninitialized contents, with the memory
476    /// being filled with `0` bytes in the provided allocator.
477    ///
478    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
479    /// of this method.
480    ///
481    /// # Examples
482    ///
483    /// ```
484    /// #![feature(allocator_api, new_uninit)]
485    ///
486    /// use std::alloc::System;
487    ///
488    /// let zero = Box::<u32, _>::new_zeroed_in(System);
489    /// let zero = unsafe { zero.assume_init() };
490    ///
491    /// assert_eq!(*zero, 0)
492    /// ```
493    ///
494    /// [zeroed]: mem::MaybeUninit::zeroed
495    #[cfg(not(no_global_oom_handling))]
496    // #[unstable(feature = "new_uninit", issue = "63291")]
497    #[must_use]
498    #[inline(always)]
499    pub fn new_zeroed_in(alloc: A) -> Box<mem::MaybeUninit<T>, A>
500    where
501        A: Allocator,
502    {
503        let layout = Layout::new::<mem::MaybeUninit<T>>();
504        // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable.
505        // That would make code size bigger.
506        match Box::try_new_zeroed_in(alloc) {
507            Ok(m) => m,
508            Err(_) => handle_alloc_error(layout),
509        }
510    }
511
512    /// Constructs a new `Box` with uninitialized contents, with the memory
513    /// being filled with `0` bytes in the provided allocator,
514    /// returning an error if the allocation fails,
515    ///
516    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
517    /// of this method.
518    ///
519    /// # Examples
520    ///
521    /// ```
522    /// #![feature(allocator_api, new_uninit)]
523    ///
524    /// use std::alloc::System;
525    ///
526    /// let zero = Box::<u32, _>::try_new_zeroed_in(System)?;
527    /// let zero = unsafe { zero.assume_init() };
528    ///
529    /// assert_eq!(*zero, 0);
530    /// # Ok::<(), std::alloc::AllocError>(())
531    /// ```
532    ///
533    /// [zeroed]: mem::MaybeUninit::zeroed
534    #[inline(always)]
535    pub fn try_new_zeroed_in(alloc: A) -> Result<Box<mem::MaybeUninit<T>, A>, AllocError>
536    where
537        A: Allocator,
538    {
539        let ptr = if mem::size_of::<T>() == 0 {
540            NonNull::dangling()
541        } else {
542            let layout = Layout::new::<mem::MaybeUninit<T>>();
543            alloc.allocate_zeroed(layout)?.cast()
544        };
545        unsafe { Ok(Box::from_raw_in(ptr.as_ptr(), alloc)) }
546    }
547
548    /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then
549    /// `x` will be pinned in memory and unable to be moved.
550    ///
551    /// Constructing and pinning of the `Box` can also be done in two steps: `Box::pin_in(x, alloc)`
552    /// does the same as <code>[Box::into_pin]\([Box::new_in]\(x, alloc))</code>. Consider using
553    /// [`into_pin`](Box::into_pin) if you already have a `Box<T, A>`, or if you want to
554    /// construct a (pinned) `Box` in a different way than with [`Box::new_in`].
555    #[cfg(not(no_global_oom_handling))]
556    #[must_use]
557    #[inline(always)]
558    pub fn pin_in(x: T, alloc: A) -> Pin<Self>
559    where
560        A: 'static + Allocator,
561    {
562        Self::into_pin(Self::new_in(x, alloc))
563    }
564
565    /// Converts a `Box<T>` into a `Box<[T]>`
566    ///
567    /// This conversion does not allocate on the heap and happens in place.
568    #[inline(always)]
569    pub fn into_boxed_slice(boxed: Self) -> Box<[T], A> {
570        let (raw, alloc) = Box::into_raw_with_allocator(boxed);
571        unsafe { Box::from_raw_in(raw as *mut [T; 1], alloc) }
572    }
573
574    /// Consumes the `Box`, returning the wrapped value.
575    ///
576    /// # Examples
577    ///
578    /// ```
579    /// #![feature(box_into_inner)]
580    ///
581    /// let c = Box::new(5);
582    ///
583    /// assert_eq!(Box::into_inner(c), 5);
584    /// ```
585    #[inline(always)]
586    pub fn into_inner(boxed: Self) -> T {
587        // Override our default `Drop` implementation.
588        // Though the default `Drop` implementation drops the both the pointer and the allocator,
589        // here we only want to drop the allocator.
590        let boxed = mem::ManuallyDrop::new(boxed);
591        let alloc = unsafe { ptr::read(&boxed.1) };
592
593        let ptr = boxed.0;
594        let unboxed = unsafe { ptr.as_ptr().read() };
595        unsafe { alloc.deallocate(ptr.as_non_null_ptr().cast(), Layout::new::<T>()) };
596
597        unboxed
598    }
599}
600
601impl<T> Box<[T]> {
602    /// Constructs a new boxed slice with uninitialized contents.
603    ///
604    /// # Examples
605    ///
606    /// ```
607    /// #![feature(new_uninit)]
608    ///
609    /// let mut values = Box::<[u32]>::new_uninit_slice(3);
610    ///
611    /// let values = unsafe {
612    ///     // Deferred initialization:
613    ///     values[0].as_mut_ptr().write(1);
614    ///     values[1].as_mut_ptr().write(2);
615    ///     values[2].as_mut_ptr().write(3);
616    ///
617    ///     values.assume_init()
618    /// };
619    ///
620    /// assert_eq!(*values, [1, 2, 3])
621    /// ```
622    #[cfg(not(no_global_oom_handling))]
623    #[must_use]
624    #[inline(always)]
625    pub fn new_uninit_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> {
626        unsafe { RawVec::with_capacity(len).into_box(len) }
627    }
628
629    /// Constructs a new boxed slice with uninitialized contents, with the memory
630    /// being filled with `0` bytes.
631    ///
632    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
633    /// of this method.
634    ///
635    /// # Examples
636    ///
637    /// ```
638    /// #![feature(new_zeroed_alloc)]
639    ///
640    /// let values = Box::<[u32]>::new_zeroed_slice(3);
641    /// let values = unsafe { values.assume_init() };
642    ///
643    /// assert_eq!(*values, [0, 0, 0])
644    /// ```
645    ///
646    /// [zeroed]: mem::MaybeUninit::zeroed
647    #[cfg(not(no_global_oom_handling))]
648    #[must_use]
649    #[inline(always)]
650    pub fn new_zeroed_slice(len: usize) -> Box<[mem::MaybeUninit<T>]> {
651        unsafe { RawVec::with_capacity_zeroed(len).into_box(len) }
652    }
653
654    /// Constructs a new boxed slice with uninitialized contents. Returns an error if
655    /// the allocation fails
656    ///
657    /// # Examples
658    ///
659    /// ```
660    /// #![feature(allocator_api, new_uninit)]
661    ///
662    /// let mut values = Box::<[u32]>::try_new_uninit_slice(3)?;
663    /// let values = unsafe {
664    ///     // Deferred initialization:
665    ///     values[0].as_mut_ptr().write(1);
666    ///     values[1].as_mut_ptr().write(2);
667    ///     values[2].as_mut_ptr().write(3);
668    ///     values.assume_init()
669    /// };
670    ///
671    /// assert_eq!(*values, [1, 2, 3]);
672    /// # Ok::<(), std::alloc::AllocError>(())
673    /// ```
674    #[inline(always)]
675    pub fn try_new_uninit_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> {
676        Self::try_new_uninit_slice_in(len, Global)
677    }
678
679    /// Constructs a new boxed slice with uninitialized contents, with the memory
680    /// being filled with `0` bytes. Returns an error if the allocation fails
681    ///
682    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
683    /// of this method.
684    ///
685    /// # Examples
686    ///
687    /// ```
688    /// #![feature(allocator_api, new_uninit)]
689    ///
690    /// let values = Box::<[u32]>::try_new_zeroed_slice(3)?;
691    /// let values = unsafe { values.assume_init() };
692    ///
693    /// assert_eq!(*values, [0, 0, 0]);
694    /// # Ok::<(), std::alloc::AllocError>(())
695    /// ```
696    ///
697    /// [zeroed]: mem::MaybeUninit::zeroed
698    #[inline(always)]
699    pub fn try_new_zeroed_slice(len: usize) -> Result<Box<[mem::MaybeUninit<T>]>, AllocError> {
700        Self::try_new_zeroed_slice_in(len, Global)
701    }
702}
703
704impl<T, A: Allocator> Box<[T], A> {
705    /// Constructs a new boxed slice with uninitialized contents in the provided allocator.
706    ///
707    /// # Examples
708    ///
709    /// ```
710    /// #![feature(allocator_api, new_uninit)]
711    ///
712    /// use std::alloc::System;
713    ///
714    /// let mut values = Box::<[u32], _>::new_uninit_slice_in(3, System);
715    ///
716    /// let values = unsafe {
717    ///     // Deferred initialization:
718    ///     values[0].as_mut_ptr().write(1);
719    ///     values[1].as_mut_ptr().write(2);
720    ///     values[2].as_mut_ptr().write(3);
721    ///
722    ///     values.assume_init()
723    /// };
724    ///
725    /// assert_eq!(*values, [1, 2, 3])
726    /// ```
727    #[cfg(not(no_global_oom_handling))]
728    #[must_use]
729    #[inline(always)]
730    pub fn new_uninit_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> {
731        unsafe { RawVec::with_capacity_in(len, alloc).into_box(len) }
732    }
733
734    /// Constructs a new boxed slice with uninitialized contents in the provided allocator,
735    /// with the memory being filled with `0` bytes.
736    ///
737    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
738    /// of this method.
739    ///
740    /// # Examples
741    ///
742    /// ```
743    /// #![feature(allocator_api, new_uninit)]
744    ///
745    /// use std::alloc::System;
746    ///
747    /// let values = Box::<[u32], _>::new_zeroed_slice_in(3, System);
748    /// let values = unsafe { values.assume_init() };
749    ///
750    /// assert_eq!(*values, [0, 0, 0])
751    /// ```
752    ///
753    /// [zeroed]: mem::MaybeUninit::zeroed
754    #[cfg(not(no_global_oom_handling))]
755    #[must_use]
756    #[inline(always)]
757    pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Box<[mem::MaybeUninit<T>], A> {
758        unsafe { RawVec::with_capacity_zeroed_in(len, alloc).into_box(len) }
759    }
760
761    /// Constructs a new boxed slice with uninitialized contents in the provided allocator. Returns an error if
762    /// the allocation fails.
763    ///
764    /// # Examples
765    ///
766    /// ```
767    /// #![feature(allocator_api, new_uninit)]
768    ///
769    /// use std::alloc::System;
770    ///
771    /// let mut values = Box::<[u32], _>::try_new_uninit_slice_in(3, System)?;
772    /// let values = unsafe {
773    ///     // Deferred initialization:
774    ///     values[0].as_mut_ptr().write(1);
775    ///     values[1].as_mut_ptr().write(2);
776    ///     values[2].as_mut_ptr().write(3);
777    ///     values.assume_init()
778    /// };
779    ///
780    /// assert_eq!(*values, [1, 2, 3]);
781    /// # Ok::<(), std::alloc::AllocError>(())
782    /// ```
783    #[inline]
784    pub fn try_new_uninit_slice_in(
785        len: usize,
786        alloc: A,
787    ) -> Result<Box<[MaybeUninit<T>], A>, AllocError> {
788        let ptr = if mem::size_of::<T>() == 0 || len == 0 {
789            NonNull::dangling()
790        } else {
791            let layout = match Layout::array::<mem::MaybeUninit<T>>(len) {
792                Ok(l) => l,
793                Err(_) => return Err(AllocError),
794            };
795            alloc.allocate(layout)?.cast()
796        };
797        unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, alloc).into_box(len)) }
798    }
799
800    /// Constructs a new boxed slice with uninitialized contents in the provided allocator, with the memory
801    /// being filled with `0` bytes. Returns an error if the allocation fails.
802    ///
803    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and incorrect usage
804    /// of this method.
805    ///
806    /// # Examples
807    ///
808    /// ```
809    /// #![feature(allocator_api, new_uninit)]
810    ///
811    /// use std::alloc::System;
812    ///
813    /// let values = Box::<[u32], _>::try_new_zeroed_slice_in(3, System)?;
814    /// let values = unsafe { values.assume_init() };
815    ///
816    /// assert_eq!(*values, [0, 0, 0]);
817    /// # Ok::<(), std::alloc::AllocError>(())
818    /// ```
819    ///
820    /// [zeroed]: mem::MaybeUninit::zeroed
821    #[inline]
822    pub fn try_new_zeroed_slice_in(
823        len: usize,
824        alloc: A,
825    ) -> Result<Box<[mem::MaybeUninit<T>], A>, AllocError> {
826        let ptr = if mem::size_of::<T>() == 0 || len == 0 {
827            NonNull::dangling()
828        } else {
829            let layout = match Layout::array::<mem::MaybeUninit<T>>(len) {
830                Ok(l) => l,
831                Err(_) => return Err(AllocError),
832            };
833            alloc.allocate_zeroed(layout)?.cast()
834        };
835        unsafe { Ok(RawVec::from_raw_parts_in(ptr.as_ptr(), len, alloc).into_box(len)) }
836    }
837
838    /// Converts `self` into a vector without clones or allocation.
839    ///
840    /// The resulting vector can be converted back into a box via
841    /// `Vec<T>`'s `into_boxed_slice` method.
842    ///
843    /// # Examples
844    ///
845    /// ```
846    /// let s: Box<[i32]> = Box::new([10, 40, 30]);
847    /// let x = s.into_vec();
848    /// // `s` cannot be used anymore because it has been converted into `x`.
849    ///
850    /// assert_eq!(x, vec![10, 40, 30]);
851    /// ```
852    #[inline]
853    pub fn into_vec(self) -> Vec<T, A>
854    where
855        A: Allocator,
856    {
857        unsafe {
858            let len = self.len();
859            let (b, alloc) = Box::into_raw_with_allocator(self);
860            Vec::from_raw_parts_in(b as *mut T, len, len, alloc)
861        }
862    }
863}
864
865impl<T, A: Allocator> Box<mem::MaybeUninit<T>, A> {
866    /// Converts to `Box<T, A>`.
867    ///
868    /// # Safety
869    ///
870    /// As with [`MaybeUninit::assume_init`],
871    /// it is up to the caller to guarantee that the value
872    /// really is in an initialized state.
873    /// Calling this when the content is not yet fully initialized
874    /// causes immediate undefined behavior.
875    ///
876    /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
877    ///
878    /// # Examples
879    ///
880    /// ```
881    /// #![feature(new_uninit)]
882    ///
883    /// let mut five = Box::<u32>::new_uninit();
884    ///
885    /// let five: Box<u32> = unsafe {
886    ///     // Deferred initialization:
887    ///     five.as_mut_ptr().write(5);
888    ///
889    ///     five.assume_init()
890    /// };
891    ///
892    /// assert_eq!(*five, 5)
893    /// ```
894    #[inline(always)]
895    pub unsafe fn assume_init(self) -> Box<T, A> {
896        let (raw, alloc) = Self::into_raw_with_allocator(self);
897        unsafe { Box::<T, A>::from_raw_in(raw as *mut T, alloc) }
898    }
899
900    /// Writes the value and converts to `Box<T, A>`.
901    ///
902    /// This method converts the box similarly to [`Box::assume_init`] but
903    /// writes `value` into it before conversion thus guaranteeing safety.
904    /// In some scenarios use of this method may improve performance because
905    /// the compiler may be able to optimize copying from stack.
906    ///
907    /// # Examples
908    ///
909    /// ```
910    /// #![feature(box_uninit_write)]
911    ///
912    /// let big_box = Box::<[usize; 1024]>::new_uninit();
913    ///
914    /// let mut array = [0; 1024];
915    /// for (i, place) in array.iter_mut().enumerate() {
916    ///     *place = i;
917    /// }
918    ///
919    /// // The optimizer may be able to elide this copy, so previous code writes
920    /// // to heap directly.
921    /// let big_box = Box::write(big_box, array);
922    ///
923    /// for (i, x) in big_box.iter().enumerate() {
924    ///     assert_eq!(*x, i);
925    /// }
926    /// ```
927    #[inline(always)]
928    pub fn write(mut boxed: Self, value: T) -> Box<T, A> {
929        unsafe {
930            (*boxed).write(value);
931            boxed.assume_init()
932        }
933    }
934}
935
936impl<T, A: Allocator> Box<[mem::MaybeUninit<T>], A> {
937    /// Converts to `Box<[T], A>`.
938    ///
939    /// # Safety
940    ///
941    /// As with [`MaybeUninit::assume_init`],
942    /// it is up to the caller to guarantee that the values
943    /// really are in an initialized state.
944    /// Calling this when the content is not yet fully initialized
945    /// causes immediate undefined behavior.
946    ///
947    /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
948    ///
949    /// # Examples
950    ///
951    /// ```
952    /// #![feature(new_uninit)]
953    ///
954    /// let mut values = Box::<[u32]>::new_uninit_slice(3);
955    ///
956    /// let values = unsafe {
957    ///     // Deferred initialization:
958    ///     values[0].as_mut_ptr().write(1);
959    ///     values[1].as_mut_ptr().write(2);
960    ///     values[2].as_mut_ptr().write(3);
961    ///
962    ///     values.assume_init()
963    /// };
964    ///
965    /// assert_eq!(*values, [1, 2, 3])
966    /// ```
967    #[inline(always)]
968    pub unsafe fn assume_init(self) -> Box<[T], A> {
969        let (raw, alloc) = Self::into_raw_with_allocator(self);
970        unsafe { Box::<[T], A>::from_raw_in(raw as *mut [T], alloc) }
971    }
972}
973
974impl<T: ?Sized> Box<T> {
975    /// Constructs a box from a raw pointer.
976    ///
977    /// After calling this function, the raw pointer is owned by the
978    /// resulting `Box`. Specifically, the `Box` destructor will call
979    /// the destructor of `T` and free the allocated memory. For this
980    /// to be safe, the memory must have been allocated in accordance
981    /// with the [memory layout] used by `Box` .
982    ///
983    /// # Safety
984    ///
985    /// This function is unsafe because improper use may lead to
986    /// memory problems. For example, a double-free may occur if the
987    /// function is called twice on the same raw pointer.
988    ///
989    /// The safety conditions are described in the [memory layout] section.
990    ///
991    /// # Examples
992    ///
993    /// Recreate a `Box` which was previously converted to a raw pointer
994    /// using [`Box::into_raw`]:
995    /// ```
996    /// let x = Box::new(5);
997    /// let ptr = Box::into_raw(x);
998    /// let x = unsafe { Box::from_raw(ptr) };
999    /// ```
1000    /// Manually create a `Box` from scratch by using the global allocator:
1001    /// ```
1002    /// use std::alloc::{alloc, Layout};
1003    ///
1004    /// unsafe {
1005    ///     let ptr = alloc(Layout::new::<i32>()) as *mut i32;
1006    ///     // In general .write is required to avoid attempting to destruct
1007    ///     // the (uninitialized) previous contents of `ptr`, though for this
1008    ///     // simple example `*ptr = 5` would have worked as well.
1009    ///     ptr.write(5);
1010    ///     let x = Box::from_raw(ptr);
1011    /// }
1012    /// ```
1013    ///
1014    /// [memory layout]: self#memory-layout
1015    /// [`Layout`]: crate::Layout
1016    #[must_use = "call `drop(from_raw(ptr))` if you intend to drop the `Box`"]
1017    #[inline(always)]
1018    pub unsafe fn from_raw(raw: *mut T) -> Self {
1019        unsafe { Self::from_raw_in(raw, Global) }
1020    }
1021
1022    /// Constructs a box from a `NonNull` pointer.
1023    ///
1024    /// After calling this function, the `NonNull` pointer is owned by
1025    /// the resulting `Box`. Specifically, the `Box` destructor will call
1026    /// the destructor of `T` and free the allocated memory. For this
1027    /// to be safe, the memory must have been allocated in accordance
1028    /// with the [memory layout] used by `Box` .
1029    ///
1030    /// # Safety
1031    ///
1032    /// This function is unsafe because improper use may lead to
1033    /// memory problems. For example, a double-free may occur if the
1034    /// function is called twice on the same `NonNull` pointer.
1035    ///
1036    /// The safety conditions are described in the [memory layout] section.
1037    ///
1038    /// # Examples
1039    ///
1040    /// Recreate a `Box` which was previously converted to a `NonNull`
1041    /// pointer using [`Box::into_non_null`]:
1042    /// ```
1043    /// #![feature(box_vec_non_null)]
1044    ///
1045    /// let x = Box::new(5);
1046    /// let non_null = Box::into_non_null(x);
1047    /// let x = unsafe { Box::from_non_null(non_null) };
1048    /// ```
1049    /// Manually create a `Box` from scratch by using the global allocator:
1050    /// ```
1051    /// #![feature(box_vec_non_null)]
1052    ///
1053    /// use std::alloc::{alloc, Layout};
1054    /// use std::ptr::NonNull;
1055    ///
1056    /// unsafe {
1057    ///     let non_null = NonNull::new(alloc(Layout::new::<i32>()).cast::<i32>())
1058    ///         .expect("allocation failed");
1059    ///     // In general .write is required to avoid attempting to destruct
1060    ///     // the (uninitialized) previous contents of `non_null`.
1061    ///     non_null.write(5);
1062    ///     let x = Box::from_non_null(non_null);
1063    /// }
1064    /// ```
1065    ///
1066    /// [memory layout]: self#memory-layout
1067    /// [`Layout`]: crate::Layout
1068    #[inline(always)]
1069    #[must_use = "call `drop(Box::from_non_null(ptr))` if you intend to drop the `Box`"]
1070    pub unsafe fn from_non_null(ptr: NonNull<T>) -> Self {
1071        unsafe { Self::from_raw(ptr.as_ptr()) }
1072    }
1073}
1074
1075impl<T: ?Sized, A: Allocator> Box<T, A> {
1076    /// Constructs a box from a raw pointer in the given allocator.
1077    ///
1078    /// After calling this function, the raw pointer is owned by the
1079    /// resulting `Box`. Specifically, the `Box` destructor will call
1080    /// the destructor of `T` and free the allocated memory. For this
1081    /// to be safe, the memory must have been allocated in accordance
1082    /// with the [memory layout] used by `Box` .
1083    ///
1084    /// # Safety
1085    ///
1086    /// This function is unsafe because improper use may lead to
1087    /// memory problems. For example, a double-free may occur if the
1088    /// function is called twice on the same raw pointer.
1089    ///
1090    ///
1091    /// # Examples
1092    ///
1093    /// Recreate a `Box` which was previously converted to a raw pointer
1094    /// using [`Box::into_raw_with_allocator`]:
1095    /// ```
1096    /// use std::alloc::System;
1097    /// # use allocator_api2::boxed::Box;
1098    ///
1099    /// let x = Box::new_in(5, System);
1100    /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
1101    /// let x = unsafe { Box::from_raw_in(ptr, alloc) };
1102    /// ```
1103    /// Manually create a `Box` from scratch by using the system allocator:
1104    /// ```
1105    /// use allocator_api2::alloc::{Allocator, Layout, System};
1106    /// # use allocator_api2::boxed::Box;
1107    ///
1108    /// unsafe {
1109    ///     let ptr = System.allocate(Layout::new::<i32>())?.as_ptr().cast::<i32>();
1110    ///     // In general .write is required to avoid attempting to destruct
1111    ///     // the (uninitialized) previous contents of `ptr`, though for this
1112    ///     // simple example `*ptr = 5` would have worked as well.
1113    ///     ptr.write(5);
1114    ///     let x = Box::from_raw_in(ptr, System);
1115    /// }
1116    /// # Ok::<(), allocator_api2::alloc::AllocError>(())
1117    /// ```
1118    ///
1119    /// [memory layout]: self#memory-layout
1120    /// [`Layout`]: crate::Layout
1121    #[inline(always)]
1122    pub const unsafe fn from_raw_in(raw: *mut T, alloc: A) -> Self {
1123        Box(unsafe { Unique::new_unchecked(raw) }, alloc)
1124    }
1125
1126    /// Constructs a box from a `NonNull` pointer in the given allocator.
1127    ///
1128    /// After calling this function, the `NonNull` pointer is owned by
1129    /// the resulting `Box`. Specifically, the `Box` destructor will call
1130    /// the destructor of `T` and free the allocated memory. For this
1131    /// to be safe, the memory must have been allocated in accordance
1132    /// with the [memory layout] used by `Box` .
1133    ///
1134    /// # Safety
1135    ///
1136    /// This function is unsafe because improper use may lead to
1137    /// memory problems. For example, a double-free may occur if the
1138    /// function is called twice on the same raw pointer.
1139    ///
1140    ///
1141    /// # Examples
1142    ///
1143    /// Recreate a `Box` which was previously converted to a `NonNull` pointer
1144    /// using [`Box::into_non_null_with_allocator`]:
1145    /// ```
1146    /// #![feature(allocator_api, box_vec_non_null)]
1147    ///
1148    /// use std::alloc::System;
1149    ///
1150    /// let x = Box::new_in(5, System);
1151    /// let (non_null, alloc) = Box::into_non_null_with_allocator(x);
1152    /// let x = unsafe { Box::from_non_null_in(non_null, alloc) };
1153    /// ```
1154    /// Manually create a `Box` from scratch by using the system allocator:
1155    /// ```
1156    /// #![feature(allocator_api, box_vec_non_null, slice_ptr_get)]
1157    ///
1158    /// use std::alloc::{Allocator, Layout, System};
1159    ///
1160    /// unsafe {
1161    ///     let non_null = System.allocate(Layout::new::<i32>())?.cast::<i32>();
1162    ///     // In general .write is required to avoid attempting to destruct
1163    ///     // the (uninitialized) previous contents of `non_null`.
1164    ///     non_null.write(5);
1165    ///     let x = Box::from_non_null_in(non_null, System);
1166    /// }
1167    /// # Ok::<(), std::alloc::AllocError>(())
1168    /// ```
1169    ///
1170    /// [memory layout]: self#memory-layout
1171    /// [`Layout`]: crate::Layout
1172    #[inline(always)]
1173    pub const unsafe fn from_non_null_in(raw: NonNull<T>, alloc: A) -> Self {
1174        // SAFETY: guaranteed by the caller.
1175        unsafe { Box::from_raw_in(raw.as_ptr(), alloc) }
1176    }
1177
1178    /// Consumes the `Box`, returning a wrapped raw pointer.
1179    ///
1180    /// The pointer will be properly aligned and non-null.
1181    ///
1182    /// After calling this function, the caller is responsible for the
1183    /// memory previously managed by the `Box`. In particular, the
1184    /// caller should properly destroy `T` and release the memory, taking
1185    /// into account the [memory layout] used by `Box`. The easiest way to
1186    /// do this is to convert the raw pointer back into a `Box` with the
1187    /// [`Box::from_raw`] function, allowing the `Box` destructor to perform
1188    /// the cleanup.
1189    ///
1190    /// Note: this is an associated function, which means that you have
1191    /// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This
1192    /// is so that there is no conflict with a method on the inner type.
1193    ///
1194    /// # Examples
1195    /// Converting the raw pointer back into a `Box` with [`Box::from_raw`]
1196    /// for automatic cleanup:
1197    /// ```
1198    /// let x = Box::new(String::from("Hello"));
1199    /// let ptr = Box::into_raw(x);
1200    /// let x = unsafe { Box::from_raw(ptr) };
1201    /// ```
1202    /// Manual cleanup by explicitly running the destructor and deallocating
1203    /// the memory:
1204    /// ```
1205    /// use std::alloc::{dealloc, Layout};
1206    /// use std::ptr;
1207    ///
1208    /// let x = Box::new(String::from("Hello"));
1209    /// let p = Box::into_raw(x);
1210    /// unsafe {
1211    ///     ptr::drop_in_place(p);
1212    ///     dealloc(p as *mut u8, Layout::new::<String>());
1213    /// }
1214    /// ```
1215    ///
1216    /// [memory layout]: self#memory-layout
1217    #[inline(always)]
1218    pub fn into_raw(b: Self) -> *mut T {
1219        Self::into_raw_with_allocator(b).0
1220    }
1221
1222    /// Consumes the `Box`, returning a wrapped `NonNull` pointer.
1223    ///
1224    /// The pointer will be properly aligned.
1225    ///
1226    /// After calling this function, the caller is responsible for the
1227    /// memory previously managed by the `Box`. In particular, the
1228    /// caller should properly destroy `T` and release the memory, taking
1229    /// into account the [memory layout] used by `Box`. The easiest way to
1230    /// do this is to convert the `NonNull` pointer back into a `Box` with the
1231    /// [`Box::from_non_null`] function, allowing the `Box` destructor to
1232    /// perform the cleanup.
1233    ///
1234    /// Note: this is an associated function, which means that you have
1235    /// to call it as `Box::into_non_null(b)` instead of `b.into_non_null()`.
1236    /// This is so that there is no conflict with a method on the inner type.
1237    ///
1238    /// # Examples
1239    /// Converting the `NonNull` pointer back into a `Box` with [`Box::from_non_null`]
1240    /// for automatic cleanup:
1241    /// ```
1242    /// #![feature(box_vec_non_null)]
1243    ///
1244    /// let x = Box::new(String::from("Hello"));
1245    /// let non_null = Box::into_non_null(x);
1246    /// let x = unsafe { Box::from_non_null(non_null) };
1247    /// ```
1248    /// Manual cleanup by explicitly running the destructor and deallocating
1249    /// the memory:
1250    /// ```
1251    /// #![feature(box_vec_non_null)]
1252    ///
1253    /// use std::alloc::{dealloc, Layout};
1254    ///
1255    /// let x = Box::new(String::from("Hello"));
1256    /// let non_null = Box::into_non_null(x);
1257    /// unsafe {
1258    ///     non_null.drop_in_place();
1259    ///     dealloc(non_null.as_ptr().cast::<u8>(), Layout::new::<String>());
1260    /// }
1261    /// ```
1262    /// Note: This is equivalent to the following:
1263    /// ```
1264    /// #![feature(box_vec_non_null)]
1265    ///
1266    /// let x = Box::new(String::from("Hello"));
1267    /// let non_null = Box::into_non_null(x);
1268    /// unsafe {
1269    ///     drop(Box::from_non_null(non_null));
1270    /// }
1271    /// ```
1272    ///
1273    /// [memory layout]: self#memory-layout
1274    #[must_use = "losing the pointer will leak memory"]
1275    #[inline(always)]
1276    pub fn into_non_null(b: Self) -> NonNull<T> {
1277        // SAFETY: `Box` is guaranteed to be non-null.
1278        unsafe { NonNull::new_unchecked(Self::into_raw(b)) }
1279    }
1280
1281    /// Consumes the `Box`, returning a wrapped raw pointer and the allocator.
1282    ///
1283    /// The pointer will be properly aligned and non-null.
1284    ///
1285    /// After calling this function, the caller is responsible for the
1286    /// memory previously managed by the `Box`. In particular, the
1287    /// caller should properly destroy `T` and release the memory, taking
1288    /// into account the [memory layout] used by `Box`. The easiest way to
1289    /// do this is to convert the raw pointer back into a `Box` with the
1290    /// [`Box::from_raw_in`] function, allowing the `Box` destructor to perform
1291    /// the cleanup.
1292    ///
1293    /// Note: this is an associated function, which means that you have
1294    /// to call it as `Box::into_raw_with_allocator(b)` instead of `b.into_raw_with_allocator()`. This
1295    /// is so that there is no conflict with a method on the inner type.
1296    ///
1297    /// # Examples
1298    /// Converting the raw pointer back into a `Box` with [`Box::from_raw_in`]
1299    /// for automatic cleanup:
1300    /// ```
1301    /// #![feature(allocator_api)]
1302    ///
1303    /// use std::alloc::System;
1304    ///
1305    /// let x = Box::new_in(String::from("Hello"), System);
1306    /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
1307    /// let x = unsafe { Box::from_raw_in(ptr, alloc) };
1308    /// ```
1309    /// Manual cleanup by explicitly running the destructor and deallocating
1310    /// the memory:
1311    /// ```
1312    /// #![feature(allocator_api)]
1313    ///
1314    /// use std::alloc::{Allocator, Layout, System};
1315    /// use std::ptr::{self, NonNull};
1316    ///
1317    /// let x = Box::new_in(String::from("Hello"), System);
1318    /// let (ptr, alloc) = Box::into_raw_with_allocator(x);
1319    /// unsafe {
1320    ///     ptr::drop_in_place(ptr);
1321    ///     let non_null = NonNull::new_unchecked(ptr);
1322    ///     alloc.deallocate(non_null.cast(), Layout::new::<String>());
1323    /// }
1324    /// ```
1325    ///
1326    /// [memory layout]: self#memory-layout
1327    #[inline(always)]
1328    pub fn into_raw_with_allocator(b: Self) -> (*mut T, A) {
1329        let (leaked, alloc) = Box::into_non_null_with_allocator(b);
1330        (leaked.as_ptr(), alloc)
1331    }
1332
1333    /// Consumes the `Box`, returning a wrapped `NonNull` pointer and the allocator.
1334    ///
1335    /// The pointer will be properly aligned.
1336    ///
1337    /// After calling this function, the caller is responsible for the
1338    /// memory previously managed by the `Box`. In particular, the
1339    /// caller should properly destroy `T` and release the memory, taking
1340    /// into account the [memory layout] used by `Box`. The easiest way to
1341    /// do this is to convert the `NonNull` pointer back into a `Box` with the
1342    /// [`Box::from_non_null_in`] function, allowing the `Box` destructor to
1343    /// perform the cleanup.
1344    ///
1345    /// Note: this is an associated function, which means that you have
1346    /// to call it as `Box::into_non_null_with_allocator(b)` instead of
1347    /// `b.into_non_null_with_allocator()`. This is so that there is no
1348    /// conflict with a method on the inner type.
1349    ///
1350    /// # Examples
1351    /// Converting the `NonNull` pointer back into a `Box` with
1352    /// [`Box::from_non_null_in`] for automatic cleanup:
1353    /// ```
1354    /// #![feature(allocator_api, box_vec_non_null)]
1355    ///
1356    /// use std::alloc::System;
1357    ///
1358    /// let x = Box::new_in(String::from("Hello"), System);
1359    /// let (non_null, alloc) = Box::into_non_null_with_allocator(x);
1360    /// let x = unsafe { Box::from_non_null_in(non_null, alloc) };
1361    /// ```
1362    /// Manual cleanup by explicitly running the destructor and deallocating
1363    /// the memory:
1364    /// ```
1365    /// #![feature(allocator_api, box_vec_non_null)]
1366    ///
1367    /// use std::alloc::{Allocator, Layout, System};
1368    ///
1369    /// let x = Box::new_in(String::from("Hello"), System);
1370    /// let (non_null, alloc) = Box::into_non_null_with_allocator(x);
1371    /// unsafe {
1372    ///     non_null.drop_in_place();
1373    ///     alloc.deallocate(non_null.cast::<u8>(), Layout::new::<String>());
1374    /// }
1375    /// ```
1376    ///
1377    /// [memory layout]: self#memory-layout
1378    #[inline(always)]
1379    pub fn into_non_null_with_allocator(b: Self) -> (NonNull<T>, A) {
1380        // Box is recognized as a "unique pointer" by Stacked Borrows, but internally it is a
1381        // raw pointer for the type system. Turning it directly into a raw pointer would not be
1382        // recognized as "releasing" the unique pointer to permit aliased raw accesses,
1383        // so all raw pointer methods have to go through `Box::leak`. Turning *that* to a raw pointer
1384        // behaves correctly.
1385        let alloc = unsafe { ptr::read(&b.1) };
1386        (NonNull::from(Box::leak(b)), alloc)
1387    }
1388    /// Returns a raw mutable pointer to the `Box`'s contents.
1389    ///
1390    /// The caller must ensure that the `Box` outlives the pointer this
1391    /// function returns, or else it will end up dangling.
1392    ///
1393    /// This method guarantees that for the purpose of the aliasing model, this method
1394    /// does not materialize a reference to the underlying memory, and thus the returned pointer
1395    /// will remain valid when mixed with other calls to [`as_ptr`] and [`as_mut_ptr`].
1396    /// Note that calling other methods that materialize references to the memory
1397    /// may still invalidate this pointer.
1398    /// See the example below for how this guarantee can be used.
1399    ///
1400    /// # Examples
1401    ///
1402    /// Due to the aliasing guarantee, the following code is legal:
1403    ///
1404    /// ```rust
1405    /// #![feature(box_as_ptr)]
1406    ///
1407    /// unsafe {
1408    ///     let mut b = Box::new(0);
1409    ///     let ptr1 = Box::as_mut_ptr(&mut b);
1410    ///     ptr1.write(1);
1411    ///     let ptr2 = Box::as_mut_ptr(&mut b);
1412    ///     ptr2.write(2);
1413    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
1414    ///     ptr1.write(3);
1415    /// }
1416    /// ```
1417    ///
1418    /// [`as_mut_ptr`]: Self::as_mut_ptr
1419    /// [`as_ptr`]: Self::as_ptr
1420    #[inline(always)]
1421    pub fn as_mut_ptr(b: &mut Self) -> *mut T {
1422        // This is a primitive deref, not going through `DerefMut`, and therefore not materializing
1423        // any references.
1424        &raw mut **b
1425    }
1426
1427    /// Returns a raw pointer to the `Box`'s contents.
1428    ///
1429    /// The caller must ensure that the `Box` outlives the pointer this
1430    /// function returns, or else it will end up dangling.
1431    ///
1432    /// The caller must also ensure that the memory the pointer (non-transitively) points to
1433    /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
1434    /// derived from it. If you need to mutate the contents of the `Box`, use [`as_mut_ptr`].
1435    ///
1436    /// This method guarantees that for the purpose of the aliasing model, this method
1437    /// does not materialize a reference to the underlying memory, and thus the returned pointer
1438    /// will remain valid when mixed with other calls to [`as_ptr`] and [`as_mut_ptr`].
1439    /// Note that calling other methods that materialize mutable references to the memory,
1440    /// as well as writing to this memory, may still invalidate this pointer.
1441    /// See the example below for how this guarantee can be used.
1442    ///
1443    /// # Examples
1444    ///
1445    /// Due to the aliasing guarantee, the following code is legal:
1446    ///
1447    /// ```rust
1448    /// #![feature(box_as_ptr)]
1449    ///
1450    /// unsafe {
1451    ///     let mut v = Box::new(0);
1452    ///     let ptr1 = Box::as_ptr(&v);
1453    ///     let ptr2 = Box::as_mut_ptr(&mut v);
1454    ///     let _val = ptr2.read();
1455    ///     // No write to this memory has happened yet, so `ptr1` is still valid.
1456    ///     let _val = ptr1.read();
1457    ///     // However, once we do a write...
1458    ///     ptr2.write(1);
1459    ///     // ... `ptr1` is no longer valid.
1460    ///     // This would be UB: let _val = ptr1.read();
1461    /// }
1462    /// ```
1463    ///
1464    /// [`as_mut_ptr`]: Self::as_mut_ptr
1465    /// [`as_ptr`]: Self::as_ptr
1466    #[inline(always)]
1467    pub fn as_ptr(b: &Self) -> *const T {
1468        // This is a primitive deref, not going through `DerefMut`, and therefore not materializing
1469        // any references.
1470        &raw const **b
1471    }
1472
1473    /// Returns a reference to the underlying allocator.
1474    ///
1475    /// Note: this is an associated function, which means that you have
1476    /// to call it as `Box::allocator(&b)` instead of `b.allocator()`. This
1477    /// is so that there is no conflict with a method on the inner type.
1478    #[inline(always)]
1479    pub const fn allocator(b: &Self) -> &A {
1480        &b.1
1481    }
1482
1483    /// Consumes and leaks the `Box`, returning a mutable reference,
1484    /// `&'a mut T`. Note that the type `T` must outlive the chosen lifetime
1485    /// `'a`. If the type has only static references, or none at all, then this
1486    /// may be chosen to be `'static`.
1487    ///
1488    /// This function is mainly useful for data that lives for the remainder of
1489    /// the program's life. Dropping the returned reference will cause a memory
1490    /// leak. If this is not acceptable, the reference should first be wrapped
1491    /// with the [`Box::from_raw`] function producing a `Box`. This `Box` can
1492    /// then be dropped which will properly destroy `T` and release the
1493    /// allocated memory.
1494    ///
1495    /// Note: this is an associated function, which means that you have
1496    /// to call it as `Box::leak(b)` instead of `b.leak()`. This
1497    /// is so that there is no conflict with a method on the inner type.
1498    ///
1499    /// # Examples
1500    ///
1501    /// Simple usage:
1502    ///
1503    /// ```
1504    /// let x = Box::new(41);
1505    /// let static_ref: &'static mut usize = Box::leak(x);
1506    /// *static_ref += 1;
1507    /// assert_eq!(*static_ref, 42);
1508    /// ```
1509    ///
1510    /// Unsized data:
1511    ///
1512    /// ```
1513    /// let x = vec![1, 2, 3].into_boxed_slice();
1514    /// let static_ref = Box::leak(x);
1515    /// static_ref[0] = 4;
1516    /// assert_eq!(*static_ref, [4, 2, 3]);
1517    /// ```
1518    #[inline(always)]
1519    pub fn leak<'a>(b: Self) -> &'a mut T
1520    where
1521        A: 'a,
1522    {
1523        unsafe { &mut *mem::ManuallyDrop::new(b).0.as_ptr() }
1524    }
1525
1526    /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
1527    /// `*boxed` will be pinned in memory and unable to be moved.
1528    ///
1529    /// This conversion does not allocate on the heap and happens in place.
1530    ///
1531    /// This is also available via [`From`].
1532    ///
1533    /// Constructing and pinning a `Box` with <code>Box::into_pin([Box::new]\(x))</code>
1534    /// can also be written more concisely using <code>[Box::pin]\(x)</code>.
1535    /// This `into_pin` method is useful if you already have a `Box<T>`, or you are
1536    /// constructing a (pinned) `Box` in a different way than with [`Box::new`].
1537    ///
1538    /// # Notes
1539    ///
1540    /// It's not recommended that crates add an impl like `From<Box<T>> for Pin<T>`,
1541    /// as it'll introduce an ambiguity when calling `Pin::from`.
1542    /// A demonstration of such a poor impl is shown below.
1543    ///
1544    /// ```compile_fail
1545    /// # use std::pin::Pin;
1546    /// struct Foo; // A type defined in this crate.
1547    /// impl From<Box<()>> for Pin<Foo> {
1548    ///     fn from(_: Box<()>) -> Pin<Foo> {
1549    ///         Pin::new(Foo)
1550    ///     }
1551    /// }
1552    ///
1553    /// let foo = Box::new(());
1554    /// let bar = Pin::from(foo);
1555    /// ```
1556    #[inline(always)]
1557    pub fn into_pin(boxed: Self) -> Pin<Self>
1558    where
1559        A: 'static,
1560    {
1561        // It's not possible to move or replace the insides of a `Pin<Box<T>>`
1562        // when `T: !Unpin`, so it's safe to pin it directly without any
1563        // additional requirements.
1564        unsafe { Pin::new_unchecked(boxed) }
1565    }
1566}
1567
1568impl<T: ?Sized, A: Allocator> Drop for Box<T, A> {
1569    #[inline(always)]
1570    fn drop(&mut self) {
1571        let layout = Layout::for_value::<T>(&**self);
1572        unsafe {
1573            ptr::drop_in_place(self.0.as_mut());
1574            self.1.deallocate(self.0.as_non_null_ptr().cast(), layout);
1575        }
1576    }
1577}
1578
1579#[cfg(not(no_global_oom_handling))]
1580impl<T: Default> Default for Box<T> {
1581    /// Creates a `Box<T>`, with the `Default` value for T.
1582    #[inline(always)]
1583    fn default() -> Self {
1584        Box::new(T::default())
1585    }
1586}
1587
1588impl<T, A: Allocator + Default> Default for Box<[T], A> {
1589    #[inline(always)]
1590    fn default() -> Self {
1591        let ptr: NonNull<[T]> = NonNull::<[T; 0]>::dangling();
1592        Box(unsafe { Unique::new_unchecked(ptr.as_ptr()) }, A::default())
1593    }
1594}
1595
1596impl<A: Allocator + Default> Default for Box<str, A> {
1597    #[inline(always)]
1598    fn default() -> Self {
1599        // SAFETY: This is the same as `Unique::cast<U>` but with an unsized `U = str`.
1600        let ptr: Unique<str> = unsafe {
1601            let bytes: NonNull<[u8]> = NonNull::<[u8; 0]>::dangling();
1602            Unique::new_unchecked(bytes.as_ptr() as *mut str)
1603        };
1604        Box(ptr, A::default())
1605    }
1606}
1607
1608#[cfg(not(no_global_oom_handling))]
1609impl<T: Clone, A: Allocator + Clone> Clone for Box<T, A> {
1610    /// Returns a new box with a `clone()` of this box's contents.
1611    ///
1612    /// # Examples
1613    ///
1614    /// ```
1615    /// let x = Box::new(5);
1616    /// let y = x.clone();
1617    ///
1618    /// // The value is the same
1619    /// assert_eq!(x, y);
1620    ///
1621    /// // But they are unique objects
1622    /// assert_ne!(&*x as *const i32, &*y as *const i32);
1623    /// ```
1624    #[inline(always)]
1625    fn clone(&self) -> Self {
1626        // Pre-allocate memory to allow writing the cloned value directly.
1627        let mut boxed = Self::new_uninit_in(self.1.clone());
1628        unsafe {
1629            boxed.write((**self).clone());
1630            boxed.assume_init()
1631        }
1632    }
1633
1634    /// Copies `source`'s contents into `self` without creating a new allocation.
1635    ///
1636    /// # Examples
1637    ///
1638    /// ```
1639    /// let x = Box::new(5);
1640    /// let mut y = Box::new(10);
1641    /// let yp: *const i32 = &*y;
1642    ///
1643    /// y.clone_from(&x);
1644    ///
1645    /// // The value is the same
1646    /// assert_eq!(x, y);
1647    ///
1648    /// // And no allocation occurred
1649    /// assert_eq!(yp, &*y);
1650    /// ```
1651    #[inline(always)]
1652    fn clone_from(&mut self, source: &Self) {
1653        (**self).clone_from(&(**source));
1654    }
1655}
1656
1657#[cfg(not(no_global_oom_handling))]
1658impl Clone for Box<str> {
1659    #[inline(always)]
1660    fn clone(&self) -> Self {
1661        // this makes a copy of the data
1662        let buf: Box<[u8]> = self.as_bytes().into();
1663        unsafe { Box::from_raw(Box::into_raw(buf) as *mut str) }
1664    }
1665}
1666
1667impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Box<T, A> {
1668    #[inline(always)]
1669    fn eq(&self, other: &Self) -> bool {
1670        PartialEq::eq(&**self, &**other)
1671    }
1672    #[inline(always)]
1673    fn ne(&self, other: &Self) -> bool {
1674        PartialEq::ne(&**self, &**other)
1675    }
1676}
1677
1678impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Box<T, A> {
1679    #[inline(always)]
1680    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1681        PartialOrd::partial_cmp(&**self, &**other)
1682    }
1683    #[inline(always)]
1684    fn lt(&self, other: &Self) -> bool {
1685        PartialOrd::lt(&**self, &**other)
1686    }
1687    #[inline(always)]
1688    fn le(&self, other: &Self) -> bool {
1689        PartialOrd::le(&**self, &**other)
1690    }
1691    #[inline(always)]
1692    fn ge(&self, other: &Self) -> bool {
1693        PartialOrd::ge(&**self, &**other)
1694    }
1695    #[inline(always)]
1696    fn gt(&self, other: &Self) -> bool {
1697        PartialOrd::gt(&**self, &**other)
1698    }
1699}
1700
1701impl<T: ?Sized + Ord, A: Allocator> Ord for Box<T, A> {
1702    #[inline(always)]
1703    fn cmp(&self, other: &Self) -> Ordering {
1704        Ord::cmp(&**self, &**other)
1705    }
1706}
1707
1708impl<T: ?Sized + Eq, A: Allocator> Eq for Box<T, A> {}
1709
1710impl<T: ?Sized + Hash, A: Allocator> Hash for Box<T, A> {
1711    #[inline(always)]
1712    fn hash<H: Hasher>(&self, state: &mut H) {
1713        (**self).hash(state);
1714    }
1715}
1716
1717impl<T: ?Sized + Hasher, A: Allocator> Hasher for Box<T, A> {
1718    #[inline(always)]
1719    fn finish(&self) -> u64 {
1720        (**self).finish()
1721    }
1722    #[inline(always)]
1723    fn write(&mut self, bytes: &[u8]) {
1724        (**self).write(bytes)
1725    }
1726    #[inline(always)]
1727    fn write_u8(&mut self, i: u8) {
1728        (**self).write_u8(i)
1729    }
1730    #[inline(always)]
1731    fn write_u16(&mut self, i: u16) {
1732        (**self).write_u16(i)
1733    }
1734    #[inline(always)]
1735    fn write_u32(&mut self, i: u32) {
1736        (**self).write_u32(i)
1737    }
1738    #[inline(always)]
1739    fn write_u64(&mut self, i: u64) {
1740        (**self).write_u64(i)
1741    }
1742    #[inline(always)]
1743    fn write_u128(&mut self, i: u128) {
1744        (**self).write_u128(i)
1745    }
1746    #[inline(always)]
1747    fn write_usize(&mut self, i: usize) {
1748        (**self).write_usize(i)
1749    }
1750    #[inline(always)]
1751    fn write_i8(&mut self, i: i8) {
1752        (**self).write_i8(i)
1753    }
1754    #[inline(always)]
1755    fn write_i16(&mut self, i: i16) {
1756        (**self).write_i16(i)
1757    }
1758    #[inline(always)]
1759    fn write_i32(&mut self, i: i32) {
1760        (**self).write_i32(i)
1761    }
1762    #[inline(always)]
1763    fn write_i64(&mut self, i: i64) {
1764        (**self).write_i64(i)
1765    }
1766    #[inline(always)]
1767    fn write_i128(&mut self, i: i128) {
1768        (**self).write_i128(i)
1769    }
1770    #[inline(always)]
1771    fn write_isize(&mut self, i: isize) {
1772        (**self).write_isize(i)
1773    }
1774}
1775
1776#[cfg(not(no_global_oom_handling))]
1777impl<T> From<T> for Box<T> {
1778    /// Converts a `T` into a `Box<T>`
1779    ///
1780    /// The conversion allocates on the heap and moves `t`
1781    /// from the stack into it.
1782    ///
1783    /// # Examples
1784    ///
1785    /// ```rust
1786    /// let x = 5;
1787    /// let boxed = Box::new(5);
1788    ///
1789    /// assert_eq!(Box::from(x), boxed);
1790    /// ```
1791    #[inline(always)]
1792    fn from(t: T) -> Self {
1793        Box::new(t)
1794    }
1795}
1796
1797impl<T: ?Sized, A: Allocator> From<Box<T, A>> for Pin<Box<T, A>>
1798where
1799    A: 'static,
1800{
1801    /// Converts a `Box<T>` into a `Pin<Box<T>>`. If `T` does not implement [`Unpin`], then
1802    /// `*boxed` will be pinned in memory and unable to be moved.
1803    ///
1804    /// This conversion does not allocate on the heap and happens in place.
1805    ///
1806    /// This is also available via [`Box::into_pin`].
1807    ///
1808    /// Constructing and pinning a `Box` with <code><Pin<Box\<T>>>::from([Box::new]\(x))</code>
1809    /// can also be written more concisely using <code>[Box::pin]\(x)</code>.
1810    /// This `From` implementation is useful if you already have a `Box<T>`, or you are
1811    /// constructing a (pinned) `Box` in a different way than with [`Box::new`].
1812    #[inline(always)]
1813    fn from(boxed: Box<T, A>) -> Self {
1814        Box::into_pin(boxed)
1815    }
1816}
1817
1818#[cfg(not(no_global_oom_handling))]
1819impl<T: Copy, A: Allocator + Default> From<&[T]> for Box<[T], A> {
1820    /// Converts a `&[T]` into a `Box<[T]>`
1821    ///
1822    /// This conversion allocates on the heap
1823    /// and performs a copy of `slice` and its contents.
1824    ///
1825    /// # Examples
1826    /// ```rust
1827    /// // create a &[u8] which will be used to create a Box<[u8]>
1828    /// let slice: &[u8] = &[104, 101, 108, 108, 111];
1829    /// let boxed_slice: Box<[u8]> = Box::from(slice);
1830    ///
1831    /// println!("{boxed_slice:?}");
1832    /// ```
1833    #[inline(always)]
1834    fn from(slice: &[T]) -> Box<[T], A> {
1835        let len = slice.len();
1836        let buf = RawVec::with_capacity_in(len, A::default());
1837        unsafe {
1838            ptr::copy_nonoverlapping(slice.as_ptr(), buf.ptr(), len);
1839            buf.into_box(slice.len()).assume_init()
1840        }
1841    }
1842}
1843
1844#[cfg(not(no_global_oom_handling))]
1845impl<A: Allocator + Default> From<&str> for Box<str, A> {
1846    /// Converts a `&str` into a `Box<str>`
1847    ///
1848    /// This conversion allocates on the heap
1849    /// and performs a copy of `s`.
1850    ///
1851    /// # Examples
1852    ///
1853    /// ```rust
1854    /// let boxed: Box<str> = Box::from("hello");
1855    /// println!("{boxed}");
1856    /// ```
1857    #[inline(always)]
1858    fn from(s: &str) -> Box<str, A> {
1859        let (raw, alloc) = Box::into_raw_with_allocator(Box::<[u8], A>::from(s.as_bytes()));
1860        unsafe { Box::from_raw_in(raw as *mut str, alloc) }
1861    }
1862}
1863
1864impl<A: Allocator> From<Box<str, A>> for Box<[u8], A> {
1865    /// Converts a `Box<str>` into a `Box<[u8]>`
1866    ///
1867    /// This conversion does not allocate on the heap and happens in place.
1868    ///
1869    /// # Examples
1870    /// ```rust
1871    /// // create a Box<str> which will be used to create a Box<[u8]>
1872    /// let boxed: Box<str> = Box::from("hello");
1873    /// let boxed_str: Box<[u8]> = Box::from(boxed);
1874    ///
1875    /// // create a &[u8] which will be used to create a Box<[u8]>
1876    /// let slice: &[u8] = &[104, 101, 108, 108, 111];
1877    /// let boxed_slice = Box::from(slice);
1878    ///
1879    /// assert_eq!(boxed_slice, boxed_str);
1880    /// ```
1881    #[inline(always)]
1882    fn from(s: Box<str, A>) -> Self {
1883        let (raw, alloc) = Box::into_raw_with_allocator(s);
1884        unsafe { Box::from_raw_in(raw as *mut [u8], alloc) }
1885    }
1886}
1887
1888impl<T, A: Allocator, const N: usize> Box<[T; N], A> {
1889    #[inline(always)]
1890    pub fn slice(b: Self) -> Box<[T], A> {
1891        let (ptr, alloc) = Box::into_raw_with_allocator(b);
1892        unsafe { Box::from_raw_in(ptr, alloc) }
1893    }
1894
1895    pub fn into_vec(self) -> Vec<T, A>
1896    where
1897        A: Allocator,
1898    {
1899        unsafe {
1900            let (b, alloc) = Box::into_raw_with_allocator(self);
1901            Vec::from_raw_parts_in(b as *mut T, N, N, alloc)
1902        }
1903    }
1904}
1905
1906#[cfg(not(no_global_oom_handling))]
1907impl<T, const N: usize> From<[T; N]> for Box<[T]> {
1908    /// Converts a `[T; N]` into a `Box<[T]>`
1909    ///
1910    /// This conversion moves the array to newly heap-allocated memory.
1911    ///
1912    /// # Examples
1913    ///
1914    /// ```rust
1915    /// let boxed: Box<[u8]> = Box::from([4, 2]);
1916    /// println!("{boxed:?}");
1917    /// ```
1918    #[inline(always)]
1919    fn from(array: [T; N]) -> Box<[T]> {
1920        Box::slice(Box::new(array))
1921    }
1922}
1923
1924impl<T, A: Allocator, const N: usize> TryFrom<Box<[T], A>> for Box<[T; N], A> {
1925    type Error = Box<[T], A>;
1926
1927    /// Attempts to convert a `Box<[T]>` into a `Box<[T; N]>`.
1928    ///
1929    /// The conversion occurs in-place and does not require a
1930    /// new memory allocation.
1931    ///
1932    /// # Errors
1933    ///
1934    /// Returns the old `Box<[T]>` in the `Err` variant if
1935    /// `boxed_slice.len()` does not equal `N`.
1936    #[inline(always)]
1937    fn try_from(boxed_slice: Box<[T], A>) -> Result<Self, Self::Error> {
1938        if boxed_slice.len() == N {
1939            let (ptr, alloc) = Box::into_raw_with_allocator(boxed_slice);
1940            Ok(unsafe { Box::from_raw_in(ptr as *mut [T; N], alloc) })
1941        } else {
1942            Err(boxed_slice)
1943        }
1944    }
1945}
1946
1947impl<A: Allocator> Box<dyn Any, A> {
1948    /// Attempt to downcast the box to a concrete type.
1949    ///
1950    /// # Examples
1951    ///
1952    /// ```
1953    /// use std::any::Any;
1954    ///
1955    /// fn print_if_string(value: Box<dyn Any>) {
1956    ///     if let Ok(string) = value.downcast::<String>() {
1957    ///         println!("String ({}): {}", string.len(), string);
1958    ///     }
1959    /// }
1960    ///
1961    /// let my_string = "Hello World".to_string();
1962    /// print_if_string(Box::new(my_string));
1963    /// print_if_string(Box::new(0i8));
1964    /// ```
1965    #[inline(always)]
1966    pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
1967        if self.is::<T>() {
1968            unsafe { Ok(self.downcast_unchecked::<T>()) }
1969        } else {
1970            Err(self)
1971        }
1972    }
1973
1974    /// Downcasts the box to a concrete type.
1975    ///
1976    /// For a safe alternative see [`downcast`].
1977    ///
1978    /// # Examples
1979    ///
1980    /// ```
1981    /// #![feature(downcast_unchecked)]
1982    ///
1983    /// use std::any::Any;
1984    ///
1985    /// let x: Box<dyn Any> = Box::new(1_usize);
1986    ///
1987    /// unsafe {
1988    ///     assert_eq!(*x.downcast_unchecked::<usize>(), 1);
1989    /// }
1990    /// ```
1991    ///
1992    /// # Safety
1993    ///
1994    /// The contained value must be of type `T`. Calling this method
1995    /// with the incorrect type is *undefined behavior*.
1996    ///
1997    /// [`downcast`]: Self::downcast
1998    #[inline(always)]
1999    pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
2000        debug_assert!(self.is::<T>());
2001        unsafe {
2002            let (raw, alloc): (*mut dyn Any, _) = Box::into_raw_with_allocator(self);
2003            Box::from_raw_in(raw as *mut T, alloc)
2004        }
2005    }
2006}
2007
2008impl<A: Allocator> Box<dyn Any + Send, A> {
2009    /// Attempt to downcast the box to a concrete type.
2010    ///
2011    /// # Examples
2012    ///
2013    /// ```
2014    /// use std::any::Any;
2015    ///
2016    /// fn print_if_string(value: Box<dyn Any + Send>) {
2017    ///     if let Ok(string) = value.downcast::<String>() {
2018    ///         println!("String ({}): {}", string.len(), string);
2019    ///     }
2020    /// }
2021    ///
2022    /// let my_string = "Hello World".to_string();
2023    /// print_if_string(Box::new(my_string));
2024    /// print_if_string(Box::new(0i8));
2025    /// ```
2026    #[inline(always)]
2027    pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
2028        if self.is::<T>() {
2029            unsafe { Ok(self.downcast_unchecked::<T>()) }
2030        } else {
2031            Err(self)
2032        }
2033    }
2034
2035    /// Downcasts the box to a concrete type.
2036    ///
2037    /// For a safe alternative see [`downcast`].
2038    ///
2039    /// # Examples
2040    ///
2041    /// ```
2042    /// #![feature(downcast_unchecked)]
2043    ///
2044    /// use std::any::Any;
2045    ///
2046    /// let x: Box<dyn Any + Send> = Box::new(1_usize);
2047    ///
2048    /// unsafe {
2049    ///     assert_eq!(*x.downcast_unchecked::<usize>(), 1);
2050    /// }
2051    /// ```
2052    ///
2053    /// # Safety
2054    ///
2055    /// The contained value must be of type `T`. Calling this method
2056    /// with the incorrect type is *undefined behavior*.
2057    ///
2058    /// [`downcast`]: Self::downcast
2059    #[inline(always)]
2060    pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
2061        debug_assert!(self.is::<T>());
2062        unsafe {
2063            let (raw, alloc): (*mut (dyn Any + Send), _) = Box::into_raw_with_allocator(self);
2064            Box::from_raw_in(raw as *mut T, alloc)
2065        }
2066    }
2067}
2068
2069impl<A: Allocator> Box<dyn Any + Send + Sync, A> {
2070    /// Attempt to downcast the box to a concrete type.
2071    ///
2072    /// # Examples
2073    ///
2074    /// ```
2075    /// use std::any::Any;
2076    ///
2077    /// fn print_if_string(value: Box<dyn Any + Send + Sync>) {
2078    ///     if let Ok(string) = value.downcast::<String>() {
2079    ///         println!("String ({}): {}", string.len(), string);
2080    ///     }
2081    /// }
2082    ///
2083    /// let my_string = "Hello World".to_string();
2084    /// print_if_string(Box::new(my_string));
2085    /// print_if_string(Box::new(0i8));
2086    /// ```
2087    #[inline(always)]
2088    pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self> {
2089        if self.is::<T>() {
2090            unsafe { Ok(self.downcast_unchecked::<T>()) }
2091        } else {
2092            Err(self)
2093        }
2094    }
2095
2096    /// Downcasts the box to a concrete type.
2097    ///
2098    /// For a safe alternative see [`downcast`].
2099    ///
2100    /// # Examples
2101    ///
2102    /// ```
2103    /// #![feature(downcast_unchecked)]
2104    ///
2105    /// use std::any::Any;
2106    ///
2107    /// let x: Box<dyn Any + Send + Sync> = Box::new(1_usize);
2108    ///
2109    /// unsafe {
2110    ///     assert_eq!(*x.downcast_unchecked::<usize>(), 1);
2111    /// }
2112    /// ```
2113    ///
2114    /// # Safety
2115    ///
2116    /// The contained value must be of type `T`. Calling this method
2117    /// with the incorrect type is *undefined behavior*.
2118    ///
2119    /// [`downcast`]: Self::downcast
2120    #[inline(always)]
2121    pub unsafe fn downcast_unchecked<T: Any>(self) -> Box<T, A> {
2122        debug_assert!(self.is::<T>());
2123        unsafe {
2124            let (raw, alloc): (*mut (dyn Any + Send + Sync), _) =
2125                Box::into_raw_with_allocator(self);
2126            Box::from_raw_in(raw as *mut T, alloc)
2127        }
2128    }
2129}
2130
2131impl<T: fmt::Display + ?Sized, A: Allocator> fmt::Display for Box<T, A> {
2132    #[inline(always)]
2133    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2134        fmt::Display::fmt(&**self, f)
2135    }
2136}
2137
2138impl<T: fmt::Debug + ?Sized, A: Allocator> fmt::Debug for Box<T, A> {
2139    #[inline(always)]
2140    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2141        fmt::Debug::fmt(&**self, f)
2142    }
2143}
2144
2145impl<T: ?Sized, A: Allocator> fmt::Pointer for Box<T, A> {
2146    #[inline(always)]
2147    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2148        // It's not possible to extract the inner Uniq directly from the Box,
2149        // instead we cast it to a *const which aliases the Unique
2150        let ptr: *const T = &**self;
2151        fmt::Pointer::fmt(&ptr, f)
2152    }
2153}
2154
2155impl<T: ?Sized, A: Allocator> Deref for Box<T, A> {
2156    type Target = T;
2157
2158    #[inline(always)]
2159    fn deref(&self) -> &T {
2160        unsafe { self.0.as_ref() }
2161    }
2162}
2163
2164impl<T: ?Sized, A: Allocator> DerefMut for Box<T, A> {
2165    #[inline(always)]
2166    fn deref_mut(&mut self) -> &mut T {
2167        unsafe { self.0.as_mut() }
2168    }
2169}
2170
2171impl<I: Iterator + ?Sized, A: Allocator> Iterator for Box<I, A> {
2172    type Item = I::Item;
2173
2174    #[inline(always)]
2175    fn next(&mut self) -> Option<I::Item> {
2176        (**self).next()
2177    }
2178
2179    #[inline(always)]
2180    fn size_hint(&self) -> (usize, Option<usize>) {
2181        (**self).size_hint()
2182    }
2183
2184    #[inline(always)]
2185    fn nth(&mut self, n: usize) -> Option<I::Item> {
2186        (**self).nth(n)
2187    }
2188
2189    #[inline(always)]
2190    fn last(self) -> Option<I::Item> {
2191        BoxIter::last(self)
2192    }
2193}
2194
2195trait BoxIter {
2196    type Item;
2197    fn last(self) -> Option<Self::Item>;
2198}
2199
2200impl<I: Iterator + ?Sized, A: Allocator> BoxIter for Box<I, A> {
2201    type Item = I::Item;
2202
2203    #[inline(always)]
2204    fn last(self) -> Option<I::Item> {
2205        #[inline(always)]
2206        fn some<T>(_: Option<T>, x: T) -> Option<T> {
2207            Some(x)
2208        }
2209
2210        self.fold(None, some)
2211    }
2212}
2213
2214impl<I: DoubleEndedIterator + ?Sized, A: Allocator> DoubleEndedIterator for Box<I, A> {
2215    #[inline(always)]
2216    fn next_back(&mut self) -> Option<I::Item> {
2217        (**self).next_back()
2218    }
2219    #[inline(always)]
2220    fn nth_back(&mut self, n: usize) -> Option<I::Item> {
2221        (**self).nth_back(n)
2222    }
2223}
2224
2225impl<I: ExactSizeIterator + ?Sized, A: Allocator> ExactSizeIterator for Box<I, A> {
2226    #[inline(always)]
2227    fn len(&self) -> usize {
2228        (**self).len()
2229    }
2230}
2231
2232impl<I: FusedIterator + ?Sized, A: Allocator> FusedIterator for Box<I, A> {}
2233
2234#[cfg(not(no_global_oom_handling))]
2235impl<I> FromIterator<I> for Box<[I]> {
2236    #[inline(always)]
2237    fn from_iter<T: IntoIterator<Item = I>>(iter: T) -> Self {
2238        iter.into_iter().collect::<Vec<_>>().into_boxed_slice()
2239    }
2240}
2241
2242#[cfg(not(no_global_oom_handling))]
2243impl<T: Clone, A: Allocator + Clone> Clone for Box<[T], A> {
2244    #[inline(always)]
2245    fn clone(&self) -> Self {
2246        let alloc = Box::allocator(self).clone();
2247        let mut vec = Vec::with_capacity_in(self.len(), alloc);
2248        vec.extend_from_slice(self);
2249        vec.into_boxed_slice()
2250    }
2251
2252    #[inline(always)]
2253    fn clone_from(&mut self, other: &Self) {
2254        if self.len() == other.len() {
2255            self.clone_from_slice(other);
2256        } else {
2257            *self = other.clone();
2258        }
2259    }
2260}
2261
2262impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for Box<T, A> {
2263    #[inline(always)]
2264    fn borrow(&self) -> &T {
2265        self
2266    }
2267}
2268
2269impl<T: ?Sized, A: Allocator> borrow::BorrowMut<T> for Box<T, A> {
2270    #[inline(always)]
2271    fn borrow_mut(&mut self) -> &mut T {
2272        self
2273    }
2274}
2275
2276impl<T: ?Sized, A: Allocator> AsRef<T> for Box<T, A> {
2277    #[inline(always)]
2278    fn as_ref(&self) -> &T {
2279        self
2280    }
2281}
2282
2283impl<T: ?Sized, A: Allocator> AsMut<T> for Box<T, A> {
2284    #[inline(always)]
2285    fn as_mut(&mut self) -> &mut T {
2286        self
2287    }
2288}
2289
2290/* Nota bene
2291 *
2292 *  We could have chosen not to add this impl, and instead have written a
2293 *  function of Pin<Box<T>> to Pin<T>. Such a function would not be sound,
2294 *  because Box<T> implements Unpin even when T does not, as a result of
2295 *  this impl.
2296 *
2297 *  We chose this API instead of the alternative for a few reasons:
2298 *      - Logically, it is helpful to understand pinning in regard to the
2299 *        memory region being pointed to. For this reason none of the
2300 *        standard library pointer types support projecting through a pin
2301 *        (Box<T> is the only pointer type in std for which this would be
2302 *        safe.)
2303 *      - It is in practice very useful to have Box<T> be unconditionally
2304 *        Unpin because of trait objects, for which the structural auto
2305 *        trait functionality does not apply (e.g., Box<dyn Foo> would
2306 *        otherwise not be Unpin).
2307 *
2308 *  Another type with the same semantics as Box but only a conditional
2309 *  implementation of `Unpin` (where `T: Unpin`) would be valid/safe, and
2310 *  could have a method to project a Pin<T> from it.
2311 */
2312impl<T: ?Sized, A: Allocator> Unpin for Box<T, A> where A: 'static {}
2313
2314impl<F: ?Sized + Future + Unpin, A: Allocator> Future for Box<F, A>
2315where
2316    A: 'static,
2317{
2318    type Output = F::Output;
2319
2320    #[inline(always)]
2321    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
2322        F::poll(Pin::new(&mut *self), cx)
2323    }
2324}
2325
2326#[cfg(feature = "std")]
2327mod error {
2328    use std::error::Error;
2329
2330    use super::Box;
2331
2332    #[cfg(not(no_global_oom_handling))]
2333    impl<'a, E: Error + 'a> From<E> for Box<dyn Error + 'a> {
2334        /// Converts a type of [`Error`] into a box of dyn [`Error`].
2335        ///
2336        /// # Examples
2337        ///
2338        /// ```
2339        /// use std::error::Error;
2340        /// use std::fmt;
2341        /// use std::mem;
2342        ///
2343        /// #[derive(Debug)]
2344        /// struct AnError;
2345        ///
2346        /// impl fmt::Display for AnError {
2347        ///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2348        ///         write!(f, "An error")
2349        ///     }
2350        /// }
2351        ///
2352        /// impl Error for AnError {}
2353        ///
2354        /// let an_error = AnError;
2355        /// assert!(0 == mem::size_of_val(&an_error));
2356        /// let a_boxed_error = Box::<dyn Error>::from(an_error);
2357        /// assert!(mem::size_of::<Box<dyn Error>>() == mem::size_of_val(&a_boxed_error))
2358        /// ```
2359        #[inline(always)]
2360        fn from(err: E) -> Box<dyn Error + 'a> {
2361            unsafe { Box::from_raw(Box::leak(Box::new(err))) }
2362        }
2363    }
2364
2365    #[cfg(not(no_global_oom_handling))]
2366    impl<'a, E: Error + Send + Sync + 'a> From<E> for Box<dyn Error + Send + Sync + 'a> {
2367        /// Converts a type of [`Error`] + [`Send`] + [`Sync`] into a box of
2368        /// dyn [`Error`] + [`Send`] + [`Sync`].
2369        ///
2370        /// # Examples
2371        ///
2372        /// ```
2373        /// use std::error::Error;
2374        /// use std::fmt;
2375        /// use std::mem;
2376        ///
2377        /// #[derive(Debug)]
2378        /// struct AnError;
2379        ///
2380        /// impl fmt::Display for AnError {
2381        ///     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2382        ///         write!(f, "An error")
2383        ///     }
2384        /// }
2385        ///
2386        /// impl Error for AnError {}
2387        ///
2388        /// unsafe impl Send for AnError {}
2389        ///
2390        /// unsafe impl Sync for AnError {}
2391        ///
2392        /// let an_error = AnError;
2393        /// assert!(0 == mem::size_of_val(&an_error));
2394        /// let a_boxed_error = Box::<dyn Error + Send + Sync>::from(an_error);
2395        /// assert!(
2396        ///     mem::size_of::<Box<dyn Error + Send + Sync>>() == mem::size_of_val(&a_boxed_error))
2397        /// ```
2398        #[inline(always)]
2399        fn from(err: E) -> Box<dyn Error + Send + Sync + 'a> {
2400            unsafe { Box::from_raw(Box::leak(Box::new(err))) }
2401        }
2402    }
2403
2404    impl<T: Error> Error for Box<T> {
2405        #[inline(always)]
2406        fn source(&self) -> Option<&(dyn Error + 'static)> {
2407            Error::source(&**self)
2408        }
2409    }
2410}
2411
2412#[cfg(feature = "std")]
2413impl<R: std::io::Read + ?Sized, A: Allocator> std::io::Read for Box<R, A> {
2414    #[inline]
2415    fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
2416        (**self).read(buf)
2417    }
2418
2419    #[inline]
2420    fn read_to_end(&mut self, buf: &mut std::vec::Vec<u8>) -> std::io::Result<usize> {
2421        (**self).read_to_end(buf)
2422    }
2423
2424    #[inline]
2425    fn read_to_string(&mut self, buf: &mut String) -> std::io::Result<usize> {
2426        (**self).read_to_string(buf)
2427    }
2428
2429    #[inline]
2430    fn read_exact(&mut self, buf: &mut [u8]) -> std::io::Result<()> {
2431        (**self).read_exact(buf)
2432    }
2433}
2434
2435#[cfg(feature = "std")]
2436impl<W: std::io::Write + ?Sized, A: Allocator> std::io::Write for Box<W, A> {
2437    #[inline]
2438    fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
2439        (**self).write(buf)
2440    }
2441
2442    #[inline]
2443    fn flush(&mut self) -> std::io::Result<()> {
2444        (**self).flush()
2445    }
2446
2447    #[inline]
2448    fn write_all(&mut self, buf: &[u8]) -> std::io::Result<()> {
2449        (**self).write_all(buf)
2450    }
2451
2452    #[inline]
2453    fn write_fmt(&mut self, fmt: fmt::Arguments<'_>) -> std::io::Result<()> {
2454        (**self).write_fmt(fmt)
2455    }
2456}
2457
2458#[cfg(feature = "std")]
2459impl<S: std::io::Seek + ?Sized, A: Allocator> std::io::Seek for Box<S, A> {
2460    #[inline]
2461    fn seek(&mut self, pos: std::io::SeekFrom) -> std::io::Result<u64> {
2462        (**self).seek(pos)
2463    }
2464
2465    #[inline]
2466    fn stream_position(&mut self) -> std::io::Result<u64> {
2467        (**self).stream_position()
2468    }
2469}
2470
2471#[cfg(feature = "std")]
2472impl<B: std::io::BufRead + ?Sized, A: Allocator> std::io::BufRead for Box<B, A> {
2473    #[inline]
2474    fn fill_buf(&mut self) -> std::io::Result<&[u8]> {
2475        (**self).fill_buf()
2476    }
2477
2478    #[inline]
2479    fn consume(&mut self, amt: usize) {
2480        (**self).consume(amt)
2481    }
2482
2483    #[inline]
2484    fn read_until(&mut self, byte: u8, buf: &mut std::vec::Vec<u8>) -> std::io::Result<usize> {
2485        (**self).read_until(byte, buf)
2486    }
2487
2488    #[inline]
2489    fn read_line(&mut self, buf: &mut std::string::String) -> std::io::Result<usize> {
2490        (**self).read_line(buf)
2491    }
2492}
2493
2494#[cfg(feature = "alloc")]
2495impl<A: Allocator> Extend<Box<str, A>> for alloc_crate::string::String {
2496    fn extend<I: IntoIterator<Item = Box<str, A>>>(&mut self, iter: I) {
2497        iter.into_iter().for_each(move |s| self.push_str(&s));
2498    }
2499}
2500
2501#[cfg(not(no_global_oom_handling))]
2502#[cfg(feature = "std")]
2503impl Clone for Box<std::ffi::CStr> {
2504    #[inline]
2505    fn clone(&self) -> Self {
2506        (**self).into()
2507    }
2508}
2509
2510#[cfg(not(no_global_oom_handling))]
2511#[cfg(feature = "std")]
2512impl From<&std::ffi::CStr> for Box<std::ffi::CStr> {
2513    /// Converts a `&CStr` into a `Box<CStr>`,
2514    /// by copying the contents into a newly allocated [`Box`].
2515    fn from(s: &std::ffi::CStr) -> Box<std::ffi::CStr> {
2516        let boxed: Box<[u8]> = Box::from(s.to_bytes_with_nul());
2517        unsafe { Box::from_raw(Box::into_raw(boxed) as *mut std::ffi::CStr) }
2518    }
2519}
2520
2521#[cfg(not(no_global_oom_handling))]
2522#[cfg(all(feature = "fresh-rust", not(feature = "std")))]
2523impl Clone for Box<core::ffi::CStr> {
2524    #[inline]
2525    fn clone(&self) -> Self {
2526        (**self).into()
2527    }
2528}
2529
2530#[cfg(not(no_global_oom_handling))]
2531#[cfg(all(feature = "fresh-rust", not(feature = "std")))]
2532impl From<&core::ffi::CStr> for Box<core::ffi::CStr> {
2533    /// Converts a `&CStr` into a `Box<CStr>`,
2534    /// by copying the contents into a newly allocated [`Box`].
2535    fn from(s: &core::ffi::CStr) -> Box<core::ffi::CStr> {
2536        let boxed: Box<[u8]> = Box::from(s.to_bytes_with_nul());
2537        unsafe { Box::from_raw(Box::into_raw(boxed) as *mut core::ffi::CStr) }
2538    }
2539}
2540
2541#[cfg(feature = "serde")]
2542impl<T, A> serde::Serialize for Box<T, A>
2543where
2544    T: serde::Serialize,
2545    A: Allocator,
2546{
2547    #[inline(always)]
2548    fn serialize<S: serde::ser::Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
2549        (**self).serialize(serializer)
2550    }
2551}
2552
2553#[cfg(feature = "serde")]
2554impl<'de, T, A> serde::Deserialize<'de> for Box<T, A>
2555where
2556    T: serde::Deserialize<'de>,
2557    A: Allocator + Default,
2558{
2559    #[inline(always)]
2560    fn deserialize<D: serde::de::Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error> {
2561        let value = T::deserialize(deserializer)?;
2562        Ok(Box::new_in(value, A::default()))
2563    }
2564}