allocator_api2/vec/drain.rs
1use core::fmt;
2use core::iter::FusedIterator;
3use core::mem::{self, size_of, ManuallyDrop};
4use core::ptr::{self, NonNull};
5use core::slice::{self};
6
7use crate::alloc::{Allocator, Global};
8
9use super::Vec;
10
11/// A draining iterator for `Vec<T>`.
12///
13/// This `struct` is created by [`Vec::drain`].
14/// See its documentation for more.
15///
16/// # Example
17///
18/// ```
19/// use allocator_api2::vec;
20///
21/// let mut v = vec![0, 1, 2];
22/// let iter: vec::Drain<_> = v.drain(..);
23/// ```
24pub struct Drain<'a, T: 'a, A: Allocator + 'a = Global> {
25 /// Index of tail to preserve
26 pub(super) tail_start: usize,
27 /// Length of tail
28 pub(super) tail_len: usize,
29 /// Current remaining range to remove
30 pub(super) iter: slice::Iter<'a, T>,
31 pub(super) vec: NonNull<Vec<T, A>>,
32}
33
34impl<T: fmt::Debug, A: Allocator> fmt::Debug for Drain<'_, T, A> {
35 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
36 f.debug_tuple("Drain").field(&self.iter.as_slice()).finish()
37 }
38}
39
40impl<'a, T, A: Allocator> Drain<'a, T, A> {
41 /// Returns the remaining items of this iterator as a slice.
42 ///
43 /// # Examples
44 ///
45 /// ```
46 /// use allocator_api2::vec;
47 ///
48 /// let mut vec = vec!['a', 'b', 'c'];
49 /// let mut drain = vec.drain(..);
50 /// assert_eq!(drain.as_slice(), &['a', 'b', 'c']);
51 /// let _ = drain.next().unwrap();
52 /// assert_eq!(drain.as_slice(), &['b', 'c']);
53 /// ```
54 #[must_use]
55 #[inline(always)]
56 pub fn as_slice(&self) -> &[T] {
57 self.iter.as_slice()
58 }
59
60 /// Returns a reference to the underlying allocator.
61 #[must_use]
62 #[inline(always)]
63 pub fn allocator(&self) -> &A {
64 unsafe { self.vec.as_ref().allocator() }
65 }
66
67 /// Keep unyielded elements in the source `Vec`.
68 ///
69 /// # Examples
70 ///
71 /// ```
72 /// use allocator_api2::vec;
73 ///
74 /// let mut vec = vec!['a', 'b', 'c'];
75 /// let mut drain = vec.drain(..);
76 ///
77 /// assert_eq!(drain.next().unwrap(), 'a');
78 ///
79 /// // This call keeps 'b' and 'c' in the vec.
80 /// drain.keep_rest();
81 ///
82 /// // If we wouldn't call `keep_rest()`,
83 /// // `vec` would be empty.
84 /// assert_eq!(vec, ['b', 'c']);
85 /// ```
86 #[inline(always)]
87 pub fn keep_rest(self) {
88 // At this moment layout looks like this:
89 //
90 // [head] [yielded by next] [unyielded] [yielded by next_back] [tail]
91 // ^-- start \_________/-- unyielded_len \____/-- self.tail_len
92 // ^-- unyielded_ptr ^-- tail
93 //
94 // Normally `Drop` impl would drop [unyielded] and then move [tail] to the `start`.
95 // Here we want to
96 // 1. Move [unyielded] to `start`
97 // 2. Move [tail] to a new start at `start + len(unyielded)`
98 // 3. Update length of the original vec to `len(head) + len(unyielded) + len(tail)`
99 // a. In case of ZST, this is the only thing we want to do
100 // 4. Do *not* drop self, as everything is put in a consistent state already, there is nothing to do
101 let mut this = ManuallyDrop::new(self);
102
103 unsafe {
104 let source_vec = this.vec.as_mut();
105
106 let start = source_vec.len();
107 let tail = this.tail_start;
108
109 let unyielded_len = this.iter.len();
110 let unyielded_ptr = this.iter.as_slice().as_ptr();
111
112 // ZSTs have no identity, so we don't need to move them around.
113 let needs_move = mem::size_of::<T>() != 0;
114
115 if needs_move {
116 let start_ptr = source_vec.as_mut_ptr().add(start);
117
118 // memmove back unyielded elements
119 if unyielded_ptr != start_ptr {
120 let src = unyielded_ptr;
121 let dst = start_ptr;
122
123 ptr::copy(src, dst, unyielded_len);
124 }
125
126 // memmove back untouched tail
127 if tail != (start + unyielded_len) {
128 let src = source_vec.as_ptr().add(tail);
129 let dst = start_ptr.add(unyielded_len);
130 ptr::copy(src, dst, this.tail_len);
131 }
132 }
133
134 source_vec.set_len(start + unyielded_len + this.tail_len);
135 }
136 }
137}
138
139impl<'a, T, A: Allocator> AsRef<[T]> for Drain<'a, T, A> {
140 #[inline(always)]
141 fn as_ref(&self) -> &[T] {
142 self.as_slice()
143 }
144}
145
146unsafe impl<T: Sync, A: Sync + Allocator> Sync for Drain<'_, T, A> {}
147
148unsafe impl<T: Send, A: Send + Allocator> Send for Drain<'_, T, A> {}
149
150impl<T, A: Allocator> Iterator for Drain<'_, T, A> {
151 type Item = T;
152
153 #[inline(always)]
154 fn next(&mut self) -> Option<T> {
155 self.iter
156 .next()
157 .map(|elt| unsafe { ptr::read(elt as *const _) })
158 }
159
160 #[inline(always)]
161 fn size_hint(&self) -> (usize, Option<usize>) {
162 self.iter.size_hint()
163 }
164}
165
166impl<T, A: Allocator> DoubleEndedIterator for Drain<'_, T, A> {
167 #[inline(always)]
168 fn next_back(&mut self) -> Option<T> {
169 self.iter
170 .next_back()
171 .map(|elt| unsafe { ptr::read(elt as *const _) })
172 }
173}
174
175impl<T, A: Allocator> Drop for Drain<'_, T, A> {
176 #[inline]
177 fn drop(&mut self) {
178 /// Moves back the un-`Drain`ed elements to restore the original `Vec`.
179 struct DropGuard<'r, 'a, T, A: Allocator>(&'r mut Drain<'a, T, A>);
180
181 impl<'r, 'a, T, A: Allocator> Drop for DropGuard<'r, 'a, T, A> {
182 fn drop(&mut self) {
183 if self.0.tail_len > 0 {
184 unsafe {
185 let source_vec = self.0.vec.as_mut();
186 // memmove back untouched tail, update to new length
187 let start = source_vec.len();
188 let tail = self.0.tail_start;
189 if tail != start {
190 let src = source_vec.as_ptr().add(tail);
191 let dst = source_vec.as_mut_ptr().add(start);
192 ptr::copy(src, dst, self.0.tail_len);
193 }
194 source_vec.set_len(start + self.0.tail_len);
195 }
196 }
197 }
198 }
199
200 let iter = mem::replace(&mut self.iter, [].iter());
201 let drop_len = iter.len();
202
203 let mut vec = self.vec;
204
205 if size_of::<T>() == 0 {
206 // ZSTs have no identity, so we don't need to move them around, we only need to drop the correct amount.
207 // this can be achieved by manipulating the Vec length instead of moving values out from `iter`.
208 unsafe {
209 let vec = vec.as_mut();
210 let old_len = vec.len();
211 vec.set_len(old_len + drop_len + self.tail_len);
212 vec.truncate(old_len + self.tail_len);
213 }
214
215 return;
216 }
217
218 // ensure elements are moved back into their appropriate places, even when drop_in_place panics
219 let _guard = DropGuard(self);
220
221 if drop_len == 0 {
222 return;
223 }
224
225 // as_slice() must only be called when iter.len() is > 0 because
226 // vec::Splice modifies vec::Drain fields and may grow the vec which would invalidate
227 // the iterator's internal pointers. Creating a reference to deallocated memory
228 // is invalid even when it is zero-length
229 let drop_ptr = iter.as_slice().as_ptr();
230
231 unsafe {
232 // drop_ptr comes from a slice::Iter which only gives us a &[T] but for drop_in_place
233 // a pointer with mutable provenance is necessary. Therefore we must reconstruct
234 // it from the original vec but also avoid creating a &mut to the front since that could
235 // invalidate raw pointers to it which some unsafe code might rely on.
236 let vec_ptr = vec.as_mut().as_mut_ptr();
237 let drop_offset = drop_ptr.offset_from(vec_ptr) as usize;
238 let to_drop = ptr::slice_from_raw_parts_mut(vec_ptr.add(drop_offset), drop_len);
239 ptr::drop_in_place(to_drop);
240 }
241 }
242}
243
244impl<T, A: Allocator> ExactSizeIterator for Drain<'_, T, A> {}
245
246impl<T, A: Allocator> FusedIterator for Drain<'_, T, A> {}