hermit/mm/
mod.rs

1//! Memory management.
2//!
3//! This is an overview of Hermit's memory layout:
4//!
5//! - `DeviceAlloc.device_offset` is 0 if `!cfg!(careful)`
6//! - User space virtual memory is only used if `!cfg!(feature = "common-os")`
7//! - On x86-64, PCI BARs, I/O APICs, and local APICs may be in `0xc0000000..0xffffffff`, which could be inside of `MEM`.
8//!
9//! ```text
10//!                               Virtual address
11//!                                    space
12//!
13//!                                 ...┌───┬──► 00000000
14//!           Physical address   ...   │   │
15//!                space      ...      │   │ Identity map
16//!                        ...         │   │
17//!    00000000 ◄──┬───┐...         ...├───┼──► mem_size
18//!                │   │   ...   ...   │   │
19//!     FrameAlloc │MEM│      ...      │   │ Unused
20//!                │   │   ...   ...   │   │
21//!    mem_size ◄──┼───┤...         ...├───┼──► DeviceAlloc.phys_offset
22//!                │   │   ...         │   │
23//!                │   │      ...      │   │ DeviceAlloc
24//!                │   │         ...   │   │
25//!          Empty │   │            ...├───┼──► DeviceAlloc.phys_offset + mem_size
26//!                │   │               │   │
27//!                │   │               │   │
28//!                │   │               │   │ Unused
29//!     Unknown ◄──┼───┤               │   │
30//!                │   │               │   │
31//!            PCI │   │               ├───┼──► kernel_virt_start
32//!                │   │               │   │
33//!     Unknown ◄──┼───┤               │   │ PageAlloc
34//!                │   │               │   │
35//!                │   │               ├───┼──► kernel_virt_end
36//!                │   │               │   │
37//!          Empty │   │               │   │
38//!                │   │               │   │ User space
39//!                │   │               │   │
40//!                │   │               │   │
41//! ```
42
43pub(crate) mod device_alloc;
44mod page_range_alloc;
45mod physicalmem;
46mod virtualmem;
47
48use core::mem;
49use core::ops::Range;
50
51use align_address::Align;
52use free_list::{PageLayout, PageRange};
53use hermit_sync::{Lazy, RawInterruptTicketMutex};
54pub use memory_addresses::{PhysAddr, VirtAddr};
55use talc::{ErrOnOom, Span, Talc, Talck};
56
57pub use self::page_range_alloc::{PageRangeAllocator, PageRangeBox};
58pub use self::physicalmem::{FrameAlloc, FrameBox};
59pub use self::virtualmem::{PageAlloc, PageBox};
60#[cfg(any(target_arch = "x86_64", target_arch = "riscv64"))]
61use crate::arch::mm::paging::HugePageSize;
62pub use crate::arch::mm::paging::virtual_to_physical;
63use crate::arch::mm::paging::{BasePageSize, LargePageSize, PageSize};
64use crate::{arch, env};
65
66#[cfg(target_os = "none")]
67#[global_allocator]
68pub(crate) static ALLOCATOR: Talck<RawInterruptTicketMutex, ErrOnOom> = Talc::new(ErrOnOom).lock();
69
70/// Physical and virtual address range of the 2 MiB pages that map the kernel.
71static KERNEL_ADDR_RANGE: Lazy<Range<VirtAddr>> = Lazy::new(|| {
72	if cfg!(target_os = "none") {
73		// Calculate the start and end addresses of the 2 MiB page(s) that map the kernel.
74		env::get_base_address().align_down(LargePageSize::SIZE)
75			..(env::get_base_address() + env::get_image_size()).align_up(LargePageSize::SIZE)
76	} else {
77		VirtAddr::zero()..VirtAddr::zero()
78	}
79});
80
81pub(crate) fn kernel_start_address() -> VirtAddr {
82	KERNEL_ADDR_RANGE.start
83}
84
85pub(crate) fn kernel_end_address() -> VirtAddr {
86	KERNEL_ADDR_RANGE.end
87}
88
89#[cfg(target_os = "none")]
90pub(crate) fn init() {
91	use crate::arch::mm::paging;
92
93	Lazy::force(&KERNEL_ADDR_RANGE);
94
95	unsafe {
96		arch::mm::init();
97	}
98
99	let total_mem = physicalmem::total_memory_size();
100	let kernel_addr_range = KERNEL_ADDR_RANGE.clone();
101	info!("Total memory size: {} MiB", total_mem >> 20);
102	info!(
103		"Kernel region: {:p}..{:p}",
104		kernel_addr_range.start, kernel_addr_range.end
105	);
106
107	// we reserve physical memory for the required page tables
108	// In worst case, we use page size of BasePageSize::SIZE
109	let npages = total_mem / BasePageSize::SIZE as usize;
110	let npage_3tables = npages / (BasePageSize::SIZE as usize / mem::align_of::<usize>()) + 1;
111	let npage_2tables =
112		npage_3tables / (BasePageSize::SIZE as usize / mem::align_of::<usize>()) + 1;
113	let npage_1tables =
114		npage_2tables / (BasePageSize::SIZE as usize / mem::align_of::<usize>()) + 1;
115	let reserved_space = (npage_3tables + npage_2tables + npage_1tables)
116		* BasePageSize::SIZE as usize
117		+ 2 * LargePageSize::SIZE as usize;
118	#[cfg(any(target_arch = "x86_64", target_arch = "riscv64"))]
119	let has_1gib_pages = arch::processor::supports_1gib_pages();
120	let has_2mib_pages = arch::processor::supports_2mib_pages();
121
122	let min_mem = if env::is_uefi() {
123		// On UEFI, the given memory is guaranteed free memory and the kernel is located before the given memory
124		reserved_space
125	} else {
126		(kernel_addr_range.end.as_u64() - env::get_ram_address().as_u64() + reserved_space as u64)
127			as usize
128	};
129	info!("Minimum memory size: {} MiB", min_mem >> 20);
130	let avail_mem = total_mem
131		.checked_sub(min_mem)
132		.unwrap_or_else(|| panic!("Not enough memory available!"))
133		.align_down(LargePageSize::SIZE as usize);
134
135	let mut map_addr;
136	let mut map_size;
137	let heap_start_addr;
138
139	#[cfg(feature = "common-os")]
140	{
141		info!("Using HermitOS as common OS!");
142
143		// we reserve at least 75% of the memory for the user space
144		let reserve: usize = (avail_mem * 75) / 100;
145		// 64 MB is enough as kernel heap
146		let reserve = core::cmp::min(reserve, 0x0400_0000);
147
148		let virt_size: usize = reserve.align_down(LargePageSize::SIZE as usize);
149		let layout = PageLayout::from_size_align(virt_size, LargePageSize::SIZE as usize).unwrap();
150		let page_range = PageAlloc::allocate(layout).unwrap();
151		let virt_addr = VirtAddr::from(page_range.start());
152		heap_start_addr = virt_addr;
153
154		info!(
155			"Heap: size {} MB, start address {:p}",
156			virt_size >> 20,
157			virt_addr
158		);
159
160		#[cfg(any(target_arch = "x86_64", target_arch = "riscv64"))]
161		if has_1gib_pages && virt_size > HugePageSize::SIZE as usize {
162			// Mount large pages to the next huge page boundary
163			let npages = (virt_addr.align_up(HugePageSize::SIZE) - virt_addr) as usize
164				/ LargePageSize::SIZE as usize;
165			if let Err(n) = paging::map_heap::<LargePageSize>(virt_addr, npages) {
166				map_addr = virt_addr + n as u64 * LargePageSize::SIZE;
167				map_size = virt_size - (map_addr - virt_addr) as usize;
168			} else {
169				map_addr = virt_addr.align_up(HugePageSize::SIZE);
170				map_size = virt_size - (map_addr - virt_addr) as usize;
171			}
172		} else {
173			map_addr = virt_addr;
174			map_size = virt_size;
175		}
176
177		#[cfg(not(any(target_arch = "x86_64", target_arch = "riscv64")))]
178		{
179			map_addr = virt_addr;
180			map_size = virt_size;
181		}
182	}
183
184	#[cfg(not(feature = "common-os"))]
185	{
186		// we reserve 10% of the memory for stack allocations
187		#[cfg(not(feature = "mman"))]
188		let stack_reserve: usize = (avail_mem * 10) / 100;
189
190		// At first, we map only a small part into the heap.
191		// Afterwards, we already use the heap and map the rest into
192		// the virtual address space.
193
194		#[cfg(not(feature = "mman"))]
195		let virt_size: usize = (avail_mem - stack_reserve).align_down(LargePageSize::SIZE as usize);
196		#[cfg(feature = "mman")]
197		let virt_size: usize = ((avail_mem * 75) / 100).align_down(LargePageSize::SIZE as usize);
198
199		let layout = PageLayout::from_size_align(virt_size, LargePageSize::SIZE as usize).unwrap();
200		let page_range = PageAlloc::allocate(layout).unwrap();
201		let virt_addr = VirtAddr::from(page_range.start());
202		heap_start_addr = virt_addr;
203
204		info!(
205			"Heap: size {} MB, start address {:p}",
206			virt_size >> 20,
207			virt_addr
208		);
209
210		#[cfg(any(target_arch = "x86_64", target_arch = "riscv64"))]
211		if has_1gib_pages && virt_size > HugePageSize::SIZE as usize {
212			// Mount large pages to the next huge page boundary
213			let npages = (virt_addr.align_up(HugePageSize::SIZE) - virt_addr) / LargePageSize::SIZE;
214			if let Err(n) = paging::map_heap::<LargePageSize>(virt_addr, npages as usize) {
215				map_addr = virt_addr + n as u64 * LargePageSize::SIZE;
216				map_size = virt_size - (map_addr - virt_addr) as usize;
217			} else {
218				map_addr = virt_addr.align_up(HugePageSize::SIZE);
219				map_size = virt_size - (map_addr - virt_addr) as usize;
220			}
221		} else {
222			map_addr = virt_addr;
223			map_size = virt_size;
224		}
225
226		#[cfg(not(any(target_arch = "x86_64", target_arch = "riscv64")))]
227		{
228			map_addr = virt_addr;
229			map_size = virt_size;
230		}
231	}
232
233	#[cfg(any(target_arch = "x86_64", target_arch = "riscv64"))]
234	if has_1gib_pages
235		&& map_size > HugePageSize::SIZE as usize
236		&& map_addr.is_aligned_to(HugePageSize::SIZE)
237	{
238		let size = map_size.align_down(HugePageSize::SIZE as usize);
239		if let Err(num_pages) =
240			paging::map_heap::<HugePageSize>(map_addr, size / HugePageSize::SIZE as usize)
241		{
242			map_size -= num_pages * HugePageSize::SIZE as usize;
243			map_addr += num_pages as u64 * HugePageSize::SIZE;
244		} else {
245			map_size -= size;
246			map_addr += size;
247		}
248	}
249
250	if has_2mib_pages
251		&& map_size > LargePageSize::SIZE as usize
252		&& map_addr.is_aligned_to(LargePageSize::SIZE)
253	{
254		let size = map_size.align_down(LargePageSize::SIZE as usize);
255		if let Err(num_pages) =
256			paging::map_heap::<LargePageSize>(map_addr, size / LargePageSize::SIZE as usize)
257		{
258			map_size -= num_pages * LargePageSize::SIZE as usize;
259			map_addr += num_pages as u64 * LargePageSize::SIZE;
260		} else {
261			map_size -= size;
262			map_addr += size;
263		}
264	}
265
266	if map_size > BasePageSize::SIZE as usize && map_addr.is_aligned_to(BasePageSize::SIZE) {
267		let size = map_size.align_down(BasePageSize::SIZE as usize);
268		if let Err(num_pages) =
269			paging::map_heap::<BasePageSize>(map_addr, size / BasePageSize::SIZE as usize)
270		{
271			map_size -= num_pages * BasePageSize::SIZE as usize;
272			map_addr += num_pages as u64 * BasePageSize::SIZE;
273		} else {
274			map_size -= size;
275			map_addr += size;
276		}
277	}
278
279	let heap_end_addr = map_addr;
280
281	let arena = Span::new(heap_start_addr.as_mut_ptr(), heap_end_addr.as_mut_ptr());
282	unsafe {
283		ALLOCATOR.lock().claim(arena).unwrap();
284	}
285
286	info!("Heap is located at {heap_start_addr:p}..{heap_end_addr:p} ({map_size} Bytes unmapped)");
287}
288
289pub(crate) fn print_information() {
290	info!("{FrameAlloc}");
291	info!("{PageAlloc}");
292}
293
294/// Maps a given physical address and size in virtual space and returns address.
295#[cfg(feature = "pci")]
296pub(crate) fn map(
297	physical_address: PhysAddr,
298	size: usize,
299	writable: bool,
300	no_execution: bool,
301	no_cache: bool,
302) -> VirtAddr {
303	use crate::arch::mm::paging::PageTableEntryFlags;
304	#[cfg(target_arch = "x86_64")]
305	use crate::arch::mm::paging::PageTableEntryFlagsExt;
306
307	let size = size.align_up(BasePageSize::SIZE as usize);
308	let count = size / BasePageSize::SIZE as usize;
309
310	let mut flags = PageTableEntryFlags::empty();
311	flags.normal();
312	if writable {
313		flags.writable();
314	}
315	if no_execution {
316		flags.execute_disable();
317	}
318	if no_cache {
319		flags.device();
320	}
321
322	let layout = PageLayout::from_size(size).unwrap();
323	let page_range = PageAlloc::allocate(layout).unwrap();
324	let virtual_address = VirtAddr::from(page_range.start());
325	arch::mm::paging::map::<BasePageSize>(virtual_address, physical_address, count, flags);
326
327	virtual_address
328}
329
330#[allow(dead_code)]
331/// unmaps virtual address, without 'freeing' physical memory it is mapped to!
332pub(crate) fn unmap(virtual_address: VirtAddr, size: usize) {
333	let size = size.align_up(BasePageSize::SIZE as usize);
334
335	if arch::mm::paging::virtual_to_physical(virtual_address).is_some() {
336		arch::mm::paging::unmap::<BasePageSize>(
337			virtual_address,
338			size / BasePageSize::SIZE as usize,
339		);
340
341		let range = PageRange::from_start_len(virtual_address.as_usize(), size).unwrap();
342		unsafe {
343			PageAlloc::deallocate(range);
344		}
345	} else {
346		panic!(
347			"No page table entry for virtual address {:p}",
348			virtual_address
349		);
350	}
351}