x86_64/addr.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
//! Physical and virtual addresses manipulation
use core::convert::TryFrom;
use core::fmt;
#[cfg(feature = "step_trait")]
use core::iter::Step;
use core::ops::{Add, AddAssign, Sub, SubAssign};
use crate::structures::paging::page_table::PageTableLevel;
use crate::structures::paging::{PageOffset, PageTableIndex};
use bit_field::BitField;
const ADDRESS_SPACE_SIZE: u64 = 0x1_0000_0000_0000;
/// A canonical 64-bit virtual memory address.
///
/// This is a wrapper type around an `u64`, so it is always 8 bytes, even when compiled
/// on non 64-bit systems. The
/// [`TryFrom`](https://doc.rust-lang.org/std/convert/trait.TryFrom.html) trait can be used for performing conversions
/// between `u64` and `usize`.
///
/// On `x86_64`, only the 48 lower bits of a virtual address can be used. The top 16 bits need
/// to be copies of bit 47, i.e. the most significant bit. Addresses that fulfil this criterion
/// are called “canonical”. This type guarantees that it always represents a canonical address.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(transparent)]
pub struct VirtAddr(u64);
/// A 64-bit physical memory address.
///
/// This is a wrapper type around an `u64`, so it is always 8 bytes, even when compiled
/// on non 64-bit systems. The
/// [`TryFrom`](https://doc.rust-lang.org/std/convert/trait.TryFrom.html) trait can be used for performing conversions
/// between `u64` and `usize`.
///
/// On `x86_64`, only the 52 lower bits of a physical address can be used. The top 12 bits need
/// to be zero. This type guarantees that it always represents a valid physical address.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(transparent)]
pub struct PhysAddr(u64);
/// A passed `u64` was not a valid virtual address.
///
/// This means that bits 48 to 64 are not
/// a valid sign extension and are not null either. So automatic sign extension would have
/// overwritten possibly meaningful bits. This likely indicates a bug, for example an invalid
/// address calculation.
///
/// Contains the invalid address.
pub struct VirtAddrNotValid(pub u64);
impl core::fmt::Debug for VirtAddrNotValid {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("VirtAddrNotValid")
.field(&format_args!("{:#x}", self.0))
.finish()
}
}
impl VirtAddr {
/// Creates a new canonical virtual address.
///
/// The provided address should already be canonical. If you want to check
/// whether an address is canonical, use [`try_new`](Self::try_new).
///
/// ## Panics
///
/// This function panics if the bits in the range 48 to 64 are invalid
/// (i.e. are not a proper sign extension of bit 47).
#[inline]
pub const fn new(addr: u64) -> VirtAddr {
// TODO: Replace with .ok().expect(msg) when that works on stable.
match Self::try_new(addr) {
Ok(v) => v,
Err(_) => panic!("virtual address must be sign extended in bits 48 to 64"),
}
}
/// Tries to create a new canonical virtual address.
///
/// This function checks wether the given address is canonical
/// and returns an error otherwise. An address is canonical
/// if bits 48 to 64 are a correct sign
/// extension (i.e. copies of bit 47).
#[inline]
pub const fn try_new(addr: u64) -> Result<VirtAddr, VirtAddrNotValid> {
let v = Self::new_truncate(addr);
if v.0 == addr {
Ok(v)
} else {
Err(VirtAddrNotValid(addr))
}
}
/// Creates a new canonical virtual address, throwing out bits 48..64.
///
/// This function performs sign extension of bit 47 to make the address
/// canonical, overwriting bits 48 to 64. If you want to check whether an
/// address is canonical, use [`new`](Self::new) or [`try_new`](Self::try_new).
#[inline]
pub const fn new_truncate(addr: u64) -> VirtAddr {
// By doing the right shift as a signed operation (on a i64), it will
// sign extend the value, repeating the leftmost bit.
VirtAddr(((addr << 16) as i64 >> 16) as u64)
}
/// Creates a new virtual address, without any checks.
///
/// ## Safety
///
/// You must make sure bits 48..64 are equal to bit 47. This is not checked.
#[inline]
pub const unsafe fn new_unsafe(addr: u64) -> VirtAddr {
VirtAddr(addr)
}
/// Creates a virtual address that points to `0`.
#[inline]
pub const fn zero() -> VirtAddr {
VirtAddr(0)
}
/// Converts the address to an `u64`.
#[inline]
pub const fn as_u64(self) -> u64 {
self.0
}
/// Creates a virtual address from the given pointer
#[cfg(target_pointer_width = "64")]
#[inline]
pub fn from_ptr<T: ?Sized>(ptr: *const T) -> Self {
Self::new(ptr as *const () as u64)
}
/// Converts the address to a raw pointer.
#[cfg(target_pointer_width = "64")]
#[inline]
pub const fn as_ptr<T>(self) -> *const T {
self.as_u64() as *const T
}
/// Converts the address to a mutable raw pointer.
#[cfg(target_pointer_width = "64")]
#[inline]
pub const fn as_mut_ptr<T>(self) -> *mut T {
self.as_ptr::<T>() as *mut T
}
/// Convenience method for checking if a virtual address is null.
#[inline]
pub const fn is_null(self) -> bool {
self.0 == 0
}
/// Aligns the virtual address upwards to the given alignment.
///
/// See the `align_up` function for more information.
///
/// # Panics
///
/// This function panics if the resulting address is higher than
/// `0xffff_ffff_ffff_ffff`.
#[inline]
pub fn align_up<U>(self, align: U) -> Self
where
U: Into<u64>,
{
VirtAddr::new_truncate(align_up(self.0, align.into()))
}
/// Aligns the virtual address downwards to the given alignment.
///
/// See the `align_down` function for more information.
#[inline]
pub fn align_down<U>(self, align: U) -> Self
where
U: Into<u64>,
{
self.align_down_u64(align.into())
}
/// Aligns the virtual address downwards to the given alignment.
///
/// See the `align_down` function for more information.
#[inline]
pub(crate) const fn align_down_u64(self, align: u64) -> Self {
VirtAddr::new_truncate(align_down(self.0, align))
}
/// Checks whether the virtual address has the demanded alignment.
#[inline]
pub fn is_aligned<U>(self, align: U) -> bool
where
U: Into<u64>,
{
self.is_aligned_u64(align.into())
}
/// Checks whether the virtual address has the demanded alignment.
#[inline]
pub(crate) const fn is_aligned_u64(self, align: u64) -> bool {
self.align_down_u64(align).as_u64() == self.as_u64()
}
/// Returns the 12-bit page offset of this virtual address.
#[inline]
pub const fn page_offset(self) -> PageOffset {
PageOffset::new_truncate(self.0 as u16)
}
/// Returns the 9-bit level 1 page table index.
#[inline]
pub const fn p1_index(self) -> PageTableIndex {
PageTableIndex::new_truncate((self.0 >> 12) as u16)
}
/// Returns the 9-bit level 2 page table index.
#[inline]
pub const fn p2_index(self) -> PageTableIndex {
PageTableIndex::new_truncate((self.0 >> 12 >> 9) as u16)
}
/// Returns the 9-bit level 3 page table index.
#[inline]
pub const fn p3_index(self) -> PageTableIndex {
PageTableIndex::new_truncate((self.0 >> 12 >> 9 >> 9) as u16)
}
/// Returns the 9-bit level 4 page table index.
#[inline]
pub const fn p4_index(self) -> PageTableIndex {
PageTableIndex::new_truncate((self.0 >> 12 >> 9 >> 9 >> 9) as u16)
}
/// Returns the 9-bit level page table index.
#[inline]
pub const fn page_table_index(self, level: PageTableLevel) -> PageTableIndex {
PageTableIndex::new_truncate((self.0 >> 12 >> ((level as u8 - 1) * 9)) as u16)
}
// FIXME: Move this into the `Step` impl, once `Step` is stabilized.
pub(crate) fn steps_between_impl(start: &Self, end: &Self) -> Option<usize> {
let mut steps = end.0.checked_sub(start.0)?;
// Mask away extra bits that appear while jumping the gap.
steps &= 0xffff_ffff_ffff;
usize::try_from(steps).ok()
}
// FIXME: Move this into the `Step` impl, once `Step` is stabilized.
#[inline]
pub(crate) fn forward_checked_impl(start: Self, count: usize) -> Option<Self> {
let offset = u64::try_from(count).ok()?;
if offset > ADDRESS_SPACE_SIZE {
return None;
}
let mut addr = start.0.checked_add(offset)?;
match addr.get_bits(47..) {
0x1 => {
// Jump the gap by sign extending the 47th bit.
addr.set_bits(47.., 0x1ffff);
}
0x2 => {
// Address overflow
return None;
}
_ => {}
}
Some(unsafe { Self::new_unsafe(addr) })
}
}
impl fmt::Debug for VirtAddr {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("VirtAddr")
.field(&format_args!("{:#x}", self.0))
.finish()
}
}
impl fmt::Binary for VirtAddr {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Binary::fmt(&self.0, f)
}
}
impl fmt::LowerHex for VirtAddr {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::LowerHex::fmt(&self.0, f)
}
}
impl fmt::Octal for VirtAddr {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Octal::fmt(&self.0, f)
}
}
impl fmt::UpperHex for VirtAddr {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::UpperHex::fmt(&self.0, f)
}
}
impl fmt::Pointer for VirtAddr {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Pointer::fmt(&(self.0 as *const ()), f)
}
}
impl Add<u64> for VirtAddr {
type Output = Self;
#[inline]
fn add(self, rhs: u64) -> Self::Output {
VirtAddr::new(self.0 + rhs)
}
}
impl AddAssign<u64> for VirtAddr {
#[inline]
fn add_assign(&mut self, rhs: u64) {
*self = *self + rhs;
}
}
impl Sub<u64> for VirtAddr {
type Output = Self;
#[inline]
fn sub(self, rhs: u64) -> Self::Output {
VirtAddr::new(self.0.checked_sub(rhs).unwrap())
}
}
impl SubAssign<u64> for VirtAddr {
#[inline]
fn sub_assign(&mut self, rhs: u64) {
*self = *self - rhs;
}
}
impl Sub<VirtAddr> for VirtAddr {
type Output = u64;
#[inline]
fn sub(self, rhs: VirtAddr) -> Self::Output {
self.as_u64().checked_sub(rhs.as_u64()).unwrap()
}
}
#[cfg(feature = "step_trait")]
impl Step for VirtAddr {
#[inline]
fn steps_between(start: &Self, end: &Self) -> Option<usize> {
Self::steps_between_impl(start, end)
}
#[inline]
fn forward_checked(start: Self, count: usize) -> Option<Self> {
Self::forward_checked_impl(start, count)
}
#[inline]
fn backward_checked(start: Self, count: usize) -> Option<Self> {
let offset = u64::try_from(count).ok()?;
if offset > ADDRESS_SPACE_SIZE {
return None;
}
let mut addr = start.0.checked_sub(offset)?;
match addr.get_bits(47..) {
0x1fffe => {
// Jump the gap by sign extending the 47th bit.
addr.set_bits(47.., 0);
}
0x1fffd => {
// Address underflow
return None;
}
_ => {}
}
Some(unsafe { Self::new_unsafe(addr) })
}
}
/// A passed `u64` was not a valid physical address.
///
/// This means that bits 52 to 64 were not all null.
///
/// Contains the invalid address.
pub struct PhysAddrNotValid(pub u64);
impl core::fmt::Debug for PhysAddrNotValid {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("PhysAddrNotValid")
.field(&format_args!("{:#x}", self.0))
.finish()
}
}
impl PhysAddr {
/// Creates a new physical address.
///
/// ## Panics
///
/// This function panics if a bit in the range 52 to 64 is set.
#[inline]
pub const fn new(addr: u64) -> Self {
// TODO: Replace with .ok().expect(msg) when that works on stable.
match Self::try_new(addr) {
Ok(p) => p,
Err(_) => panic!("physical addresses must not have any bits in the range 52 to 64 set"),
}
}
/// Creates a new physical address, throwing bits 52..64 away.
#[inline]
pub const fn new_truncate(addr: u64) -> PhysAddr {
PhysAddr(addr % (1 << 52))
}
/// Creates a new physical address, without any checks.
///
/// ## Safety
///
/// You must make sure bits 52..64 are zero. This is not checked.
#[inline]
pub const unsafe fn new_unsafe(addr: u64) -> PhysAddr {
PhysAddr(addr)
}
/// Tries to create a new physical address.
///
/// Fails if any bits in the range 52 to 64 are set.
#[inline]
pub const fn try_new(addr: u64) -> Result<Self, PhysAddrNotValid> {
let p = Self::new_truncate(addr);
if p.0 == addr {
Ok(p)
} else {
Err(PhysAddrNotValid(addr))
}
}
/// Creates a physical address that points to `0`.
#[inline]
pub const fn zero() -> PhysAddr {
PhysAddr(0)
}
/// Converts the address to an `u64`.
#[inline]
pub const fn as_u64(self) -> u64 {
self.0
}
/// Convenience method for checking if a physical address is null.
#[inline]
pub const fn is_null(self) -> bool {
self.0 == 0
}
/// Aligns the physical address upwards to the given alignment.
///
/// See the `align_up` function for more information.
///
/// # Panics
///
/// This function panics if the resulting address has a bit in the range 52
/// to 64 set.
#[inline]
pub fn align_up<U>(self, align: U) -> Self
where
U: Into<u64>,
{
PhysAddr::new(align_up(self.0, align.into()))
}
/// Aligns the physical address downwards to the given alignment.
///
/// See the `align_down` function for more information.
#[inline]
pub fn align_down<U>(self, align: U) -> Self
where
U: Into<u64>,
{
PhysAddr(align_down(self.0, align.into()))
}
/// Checks whether the physical address has the demanded alignment.
#[inline]
pub fn is_aligned<U>(self, align: U) -> bool
where
U: Into<u64>,
{
self.align_down(align) == self
}
}
impl fmt::Debug for PhysAddr {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("PhysAddr")
.field(&format_args!("{:#x}", self.0))
.finish()
}
}
impl fmt::Binary for PhysAddr {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Binary::fmt(&self.0, f)
}
}
impl fmt::LowerHex for PhysAddr {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::LowerHex::fmt(&self.0, f)
}
}
impl fmt::Octal for PhysAddr {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Octal::fmt(&self.0, f)
}
}
impl fmt::UpperHex for PhysAddr {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::UpperHex::fmt(&self.0, f)
}
}
impl fmt::Pointer for PhysAddr {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Pointer::fmt(&(self.0 as *const ()), f)
}
}
impl Add<u64> for PhysAddr {
type Output = Self;
#[inline]
fn add(self, rhs: u64) -> Self::Output {
PhysAddr::new(self.0 + rhs)
}
}
impl AddAssign<u64> for PhysAddr {
#[inline]
fn add_assign(&mut self, rhs: u64) {
*self = *self + rhs;
}
}
impl Sub<u64> for PhysAddr {
type Output = Self;
#[inline]
fn sub(self, rhs: u64) -> Self::Output {
PhysAddr::new(self.0.checked_sub(rhs).unwrap())
}
}
impl SubAssign<u64> for PhysAddr {
#[inline]
fn sub_assign(&mut self, rhs: u64) {
*self = *self - rhs;
}
}
impl Sub<PhysAddr> for PhysAddr {
type Output = u64;
#[inline]
fn sub(self, rhs: PhysAddr) -> Self::Output {
self.as_u64().checked_sub(rhs.as_u64()).unwrap()
}
}
/// Align address downwards.
///
/// Returns the greatest `x` with alignment `align` so that `x <= addr`.
///
/// Panics if the alignment is not a power of two.
#[inline]
pub const fn align_down(addr: u64, align: u64) -> u64 {
assert!(align.is_power_of_two(), "`align` must be a power of two");
addr & !(align - 1)
}
/// Align address upwards.
///
/// Returns the smallest `x` with alignment `align` so that `x >= addr`.
///
/// Panics if the alignment is not a power of two or if an overflow occurs.
#[inline]
pub const fn align_up(addr: u64, align: u64) -> u64 {
assert!(align.is_power_of_two(), "`align` must be a power of two");
let align_mask = align - 1;
if addr & align_mask == 0 {
addr // already aligned
} else {
// FIXME: Replace with .expect, once `Option::expect` is const.
if let Some(aligned) = (addr | align_mask).checked_add(1) {
aligned
} else {
panic!("attempt to add with overflow")
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
pub fn virtaddr_new_truncate() {
assert_eq!(VirtAddr::new_truncate(0), VirtAddr(0));
assert_eq!(VirtAddr::new_truncate(1 << 47), VirtAddr(0xfffff << 47));
assert_eq!(VirtAddr::new_truncate(123), VirtAddr(123));
assert_eq!(VirtAddr::new_truncate(123 << 47), VirtAddr(0xfffff << 47));
}
#[test]
#[cfg(feature = "step_trait")]
fn virtaddr_step_forward() {
assert_eq!(Step::forward(VirtAddr(0), 0), VirtAddr(0));
assert_eq!(Step::forward(VirtAddr(0), 1), VirtAddr(1));
assert_eq!(
Step::forward(VirtAddr(0x7fff_ffff_ffff), 1),
VirtAddr(0xffff_8000_0000_0000)
);
assert_eq!(
Step::forward(VirtAddr(0xffff_8000_0000_0000), 1),
VirtAddr(0xffff_8000_0000_0001)
);
assert_eq!(
Step::forward_checked(VirtAddr(0xffff_ffff_ffff_ffff), 1),
None
);
assert_eq!(
Step::forward(VirtAddr(0x7fff_ffff_ffff), 0x1234_5678_9abd),
VirtAddr(0xffff_9234_5678_9abc)
);
assert_eq!(
Step::forward(VirtAddr(0x7fff_ffff_ffff), 0x8000_0000_0000),
VirtAddr(0xffff_ffff_ffff_ffff)
);
assert_eq!(
Step::forward(VirtAddr(0x7fff_ffff_ff00), 0x8000_0000_00ff),
VirtAddr(0xffff_ffff_ffff_ffff)
);
assert_eq!(
Step::forward_checked(VirtAddr(0x7fff_ffff_ff00), 0x8000_0000_0100),
None
);
assert_eq!(
Step::forward_checked(VirtAddr(0x7fff_ffff_ffff), 0x8000_0000_0001),
None
);
}
#[test]
#[cfg(feature = "step_trait")]
fn virtaddr_step_backward() {
assert_eq!(Step::backward(VirtAddr(0), 0), VirtAddr(0));
assert_eq!(Step::backward_checked(VirtAddr(0), 1), None);
assert_eq!(Step::backward(VirtAddr(1), 1), VirtAddr(0));
assert_eq!(
Step::backward(VirtAddr(0xffff_8000_0000_0000), 1),
VirtAddr(0x7fff_ffff_ffff)
);
assert_eq!(
Step::backward(VirtAddr(0xffff_8000_0000_0001), 1),
VirtAddr(0xffff_8000_0000_0000)
);
assert_eq!(
Step::backward(VirtAddr(0xffff_9234_5678_9abc), 0x1234_5678_9abd),
VirtAddr(0x7fff_ffff_ffff)
);
assert_eq!(
Step::backward(VirtAddr(0xffff_8000_0000_0000), 0x8000_0000_0000),
VirtAddr(0)
);
assert_eq!(
Step::backward(VirtAddr(0xffff_8000_0000_0000), 0x7fff_ffff_ff01),
VirtAddr(0xff)
);
assert_eq!(
Step::backward_checked(VirtAddr(0xffff_8000_0000_0000), 0x8000_0000_0001),
None
);
}
#[test]
#[cfg(feature = "step_trait")]
fn virtaddr_steps_between() {
assert_eq!(Step::steps_between(&VirtAddr(0), &VirtAddr(0)), Some(0));
assert_eq!(Step::steps_between(&VirtAddr(0), &VirtAddr(1)), Some(1));
assert_eq!(Step::steps_between(&VirtAddr(1), &VirtAddr(0)), None);
assert_eq!(
Step::steps_between(
&VirtAddr(0x7fff_ffff_ffff),
&VirtAddr(0xffff_8000_0000_0000)
),
Some(1)
);
assert_eq!(
Step::steps_between(
&VirtAddr(0xffff_8000_0000_0000),
&VirtAddr(0x7fff_ffff_ffff)
),
None
);
assert_eq!(
Step::steps_between(
&VirtAddr(0xffff_8000_0000_0000),
&VirtAddr(0xffff_8000_0000_0000)
),
Some(0)
);
assert_eq!(
Step::steps_between(
&VirtAddr(0xffff_8000_0000_0000),
&VirtAddr(0xffff_8000_0000_0001)
),
Some(1)
);
assert_eq!(
Step::steps_between(
&VirtAddr(0xffff_8000_0000_0001),
&VirtAddr(0xffff_8000_0000_0000)
),
None
);
}
#[test]
pub fn test_align_up() {
// align 1
assert_eq!(align_up(0, 1), 0);
assert_eq!(align_up(1234, 1), 1234);
assert_eq!(align_up(0xffff_ffff_ffff_ffff, 1), 0xffff_ffff_ffff_ffff);
// align 2
assert_eq!(align_up(0, 2), 0);
assert_eq!(align_up(1233, 2), 1234);
assert_eq!(align_up(0xffff_ffff_ffff_fffe, 2), 0xffff_ffff_ffff_fffe);
// address 0
assert_eq!(align_up(0, 128), 0);
assert_eq!(align_up(0, 1), 0);
assert_eq!(align_up(0, 2), 0);
assert_eq!(align_up(0, 0x8000_0000_0000_0000), 0);
}
#[test]
fn test_virt_addr_align_up() {
// Make sure the 47th bit is extended.
assert_eq!(
VirtAddr::new(0x7fff_ffff_ffff).align_up(2u64),
VirtAddr::new(0xffff_8000_0000_0000)
);
}
#[test]
fn test_virt_addr_align_down() {
// Make sure the 47th bit is extended.
assert_eq!(
VirtAddr::new(0xffff_8000_0000_0000).align_down(1u64 << 48),
VirtAddr::new(0)
);
}
#[test]
#[should_panic]
fn test_virt_addr_align_up_overflow() {
VirtAddr::new(0xffff_ffff_ffff_ffff).align_up(2u64);
}
#[test]
#[should_panic]
fn test_phys_addr_align_up_overflow() {
PhysAddr::new(0x000f_ffff_ffff_ffff).align_up(2u64);
}
#[test]
fn test_from_ptr_array() {
let slice = &[1, 2, 3, 4, 5];
// Make sure that from_ptr(slice) is the address of the first element
assert_eq!(VirtAddr::from_ptr(slice), VirtAddr::from_ptr(&slice[0]));
}
}
#[cfg(kani)]
mod proofs {
use super::*;
// The next two proof harnesses prove the correctness of the `forward`
// implementation of VirtAddr.
// This harness proves that our implementation can correctly take 0 or 1
// step starting from any address.
#[kani::proof]
fn forward_base_case() {
let start_raw: u64 = kani::any();
let Ok(start) = VirtAddr::try_new(start_raw) else {
return;
};
// Adding 0 to any address should always yield the same address.
let same = Step::forward(start, 0);
assert!(start == same);
// Manually calculate the expected address after stepping once.
let expected = match start_raw {
// Adding 1 to addresses in this range don't require gap jumps, so
// we can just add 1.
0x0000_0000_0000_0000..=0x0000_7fff_ffff_fffe => Some(start_raw + 1),
// Adding 1 to this address jumps the gap.
0x0000_7fff_ffff_ffff => Some(0xffff_8000_0000_0000),
// The range of non-canonical addresses.
0x0000_8000_0000_0000..=0xffff_7fff_ffff_ffff => unreachable!(),
// Adding 1 to addresses in this range don't require gap jumps, so
// we can just add 1.
0xffff_8000_0000_0000..=0xffff_ffff_ffff_fffe => Some(start_raw + 1),
// Adding 1 to this address causes an overflow.
0xffff_ffff_ffff_ffff => None,
};
if let Some(expected) = expected {
// Verify that `expected` is a valid address.
assert!(VirtAddr::try_new(expected).is_ok());
}
// Verify `forward_checked`.
let next = Step::forward_checked(start, 1);
assert!(next.map(VirtAddr::as_u64) == expected);
}
// This harness proves that the result of taking two small steps is the
// same as taking one combined large step.
#[kani::proof]
fn forward_induction_step() {
let start_raw: u64 = kani::any();
let Ok(start) = VirtAddr::try_new(start_raw) else {
return;
};
let count1: usize = kani::any();
let count2: usize = kani::any();
// If we can take two small steps...
let Some(next1) = Step::forward_checked(start, count1) else {
return;
};
let Some(next2) = Step::forward_checked(next1, count2) else {
return;
};
// ...then we can also take one combined large step.
let count_both = count1 + count2;
let next_both = Step::forward(start, count_both);
assert!(next2 == next_both);
}
// The next two proof harnesses prove the correctness of the `backward`
// implementation of VirtAddr using the `forward` implementation which
// we've already proven to be correct.
// They do this by proving the symmetry between those two functions.
// This harness proves the correctness of the implementation of `backward`
// for all inputs for which `forward_checked` succeeds.
#[kani::proof]
fn forward_implies_backward() {
let start_raw: u64 = kani::any();
let Ok(start) = VirtAddr::try_new(start_raw) else {
return;
};
let count: usize = kani::any();
// If `forward_checked` succeeds...
let Some(end) = Step::forward_checked(start, count) else {
return;
};
// ...then `backward` succeeds as well.
let start2 = Step::backward(end, count);
assert!(start == start2);
}
// This harness proves that for all inputs for which `backward_checked`
// succeeds, `forward` succeeds as well.
#[kani::proof]
fn backward_implies_forward() {
let end_raw: u64 = kani::any();
let Ok(end) = VirtAddr::try_new(end_raw) else {
return;
};
let count: usize = kani::any();
// If `backward_checked` succeeds...
let Some(start) = Step::backward_checked(end, count) else {
return;
};
// ...then `forward` succeeds as well.
let end2 = Step::forward(start, count);
assert!(end == end2);
}
// The next two proof harnesses prove the correctness of the
// `steps_between` implementation of VirtAddr using the `forward`
// implementation which we've already proven to be correct.
// They do this by proving the symmetry between those two functions.
// This harness proves the correctness of the implementation of
// `steps_between` for all inputs for which `forward_checked` succeeds.
#[kani::proof]
fn forward_implies_steps_between() {
let start: u64 = kani::any();
let Ok(start) = VirtAddr::try_new(start) else {
return;
};
let count: usize = kani::any();
// If `forward_checked` succeeds...
let Some(end) = Step::forward_checked(start, count) else {
return;
};
// ...then `steps_between` succeeds as well.
assert!(Step::steps_between(&start, &end) == Some(count));
}
// This harness proves that for all inputs for which `steps_between`
// succeeds, `forward` succeeds as well.
#[kani::proof]
fn steps_between_implies_forward() {
let start: u64 = kani::any();
let Ok(start) = VirtAddr::try_new(start) else {
return;
};
let end: u64 = kani::any();
let Ok(end) = VirtAddr::try_new(end) else {
return;
};
// If `steps_between` succeeds...
let Some(count) = Step::steps_between(&start, &end) else {
return;
};
// ...then `forward` succeeds as well.
assert!(Step::forward(start, count) == end);
}
}