x86_64/
addr.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
//! Physical and virtual addresses manipulation

use core::convert::TryFrom;
use core::fmt;
#[cfg(feature = "step_trait")]
use core::iter::Step;
use core::ops::{Add, AddAssign, Sub, SubAssign};

use crate::structures::paging::page_table::PageTableLevel;
use crate::structures::paging::{PageOffset, PageTableIndex};
use bit_field::BitField;

const ADDRESS_SPACE_SIZE: u64 = 0x1_0000_0000_0000;

/// A canonical 64-bit virtual memory address.
///
/// This is a wrapper type around an `u64`, so it is always 8 bytes, even when compiled
/// on non 64-bit systems. The
/// [`TryFrom`](https://doc.rust-lang.org/std/convert/trait.TryFrom.html) trait can be used for performing conversions
/// between `u64` and `usize`.
///
/// On `x86_64`, only the 48 lower bits of a virtual address can be used. The top 16 bits need
/// to be copies of bit 47, i.e. the most significant bit. Addresses that fulfil this criterion
/// are called “canonical”. This type guarantees that it always represents a canonical address.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(transparent)]
pub struct VirtAddr(u64);

/// A 64-bit physical memory address.
///
/// This is a wrapper type around an `u64`, so it is always 8 bytes, even when compiled
/// on non 64-bit systems. The
/// [`TryFrom`](https://doc.rust-lang.org/std/convert/trait.TryFrom.html) trait can be used for performing conversions
/// between `u64` and `usize`.
///
/// On `x86_64`, only the 52 lower bits of a physical address can be used. The top 12 bits need
/// to be zero. This type guarantees that it always represents a valid physical address.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(transparent)]
pub struct PhysAddr(u64);

/// A passed `u64` was not a valid virtual address.
///
/// This means that bits 48 to 64 are not
/// a valid sign extension and are not null either. So automatic sign extension would have
/// overwritten possibly meaningful bits. This likely indicates a bug, for example an invalid
/// address calculation.
///
/// Contains the invalid address.
pub struct VirtAddrNotValid(pub u64);

impl core::fmt::Debug for VirtAddrNotValid {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_tuple("VirtAddrNotValid")
            .field(&format_args!("{:#x}", self.0))
            .finish()
    }
}

impl VirtAddr {
    /// Creates a new canonical virtual address.
    ///
    /// The provided address should already be canonical. If you want to check
    /// whether an address is canonical, use [`try_new`](Self::try_new).
    ///
    /// ## Panics
    ///
    /// This function panics if the bits in the range 48 to 64 are invalid
    /// (i.e. are not a proper sign extension of bit 47).
    #[inline]
    pub const fn new(addr: u64) -> VirtAddr {
        // TODO: Replace with .ok().expect(msg) when that works on stable.
        match Self::try_new(addr) {
            Ok(v) => v,
            Err(_) => panic!("virtual address must be sign extended in bits 48 to 64"),
        }
    }

    /// Tries to create a new canonical virtual address.
    ///
    /// This function checks wether the given address is canonical
    /// and returns an error otherwise. An address is canonical
    /// if bits 48 to 64 are a correct sign
    /// extension (i.e. copies of bit 47).
    #[inline]
    pub const fn try_new(addr: u64) -> Result<VirtAddr, VirtAddrNotValid> {
        let v = Self::new_truncate(addr);
        if v.0 == addr {
            Ok(v)
        } else {
            Err(VirtAddrNotValid(addr))
        }
    }

    /// Creates a new canonical virtual address, throwing out bits 48..64.
    ///
    /// This function performs sign extension of bit 47 to make the address
    /// canonical, overwriting bits 48 to 64. If you want to check whether an
    /// address is canonical, use [`new`](Self::new) or [`try_new`](Self::try_new).
    #[inline]
    pub const fn new_truncate(addr: u64) -> VirtAddr {
        // By doing the right shift as a signed operation (on a i64), it will
        // sign extend the value, repeating the leftmost bit.
        VirtAddr(((addr << 16) as i64 >> 16) as u64)
    }

    /// Creates a new virtual address, without any checks.
    ///
    /// ## Safety
    ///
    /// You must make sure bits 48..64 are equal to bit 47. This is not checked.
    #[inline]
    pub const unsafe fn new_unsafe(addr: u64) -> VirtAddr {
        VirtAddr(addr)
    }

    /// Creates a virtual address that points to `0`.
    #[inline]
    pub const fn zero() -> VirtAddr {
        VirtAddr(0)
    }

    /// Converts the address to an `u64`.
    #[inline]
    pub const fn as_u64(self) -> u64 {
        self.0
    }

    /// Creates a virtual address from the given pointer
    #[cfg(target_pointer_width = "64")]
    #[inline]
    pub fn from_ptr<T: ?Sized>(ptr: *const T) -> Self {
        Self::new(ptr as *const () as u64)
    }

    /// Converts the address to a raw pointer.
    #[cfg(target_pointer_width = "64")]
    #[inline]
    pub const fn as_ptr<T>(self) -> *const T {
        self.as_u64() as *const T
    }

    /// Converts the address to a mutable raw pointer.
    #[cfg(target_pointer_width = "64")]
    #[inline]
    pub const fn as_mut_ptr<T>(self) -> *mut T {
        self.as_ptr::<T>() as *mut T
    }

    /// Convenience method for checking if a virtual address is null.
    #[inline]
    pub const fn is_null(self) -> bool {
        self.0 == 0
    }

    /// Aligns the virtual address upwards to the given alignment.
    ///
    /// See the `align_up` function for more information.
    ///
    /// # Panics
    ///
    /// This function panics if the resulting address is higher than
    /// `0xffff_ffff_ffff_ffff`.
    #[inline]
    pub fn align_up<U>(self, align: U) -> Self
    where
        U: Into<u64>,
    {
        VirtAddr::new_truncate(align_up(self.0, align.into()))
    }

    /// Aligns the virtual address downwards to the given alignment.
    ///
    /// See the `align_down` function for more information.
    #[inline]
    pub fn align_down<U>(self, align: U) -> Self
    where
        U: Into<u64>,
    {
        self.align_down_u64(align.into())
    }

    /// Aligns the virtual address downwards to the given alignment.
    ///
    /// See the `align_down` function for more information.
    #[inline]
    pub(crate) const fn align_down_u64(self, align: u64) -> Self {
        VirtAddr::new_truncate(align_down(self.0, align))
    }

    /// Checks whether the virtual address has the demanded alignment.
    #[inline]
    pub fn is_aligned<U>(self, align: U) -> bool
    where
        U: Into<u64>,
    {
        self.is_aligned_u64(align.into())
    }

    /// Checks whether the virtual address has the demanded alignment.
    #[inline]
    pub(crate) const fn is_aligned_u64(self, align: u64) -> bool {
        self.align_down_u64(align).as_u64() == self.as_u64()
    }

    /// Returns the 12-bit page offset of this virtual address.
    #[inline]
    pub const fn page_offset(self) -> PageOffset {
        PageOffset::new_truncate(self.0 as u16)
    }

    /// Returns the 9-bit level 1 page table index.
    #[inline]
    pub const fn p1_index(self) -> PageTableIndex {
        PageTableIndex::new_truncate((self.0 >> 12) as u16)
    }

    /// Returns the 9-bit level 2 page table index.
    #[inline]
    pub const fn p2_index(self) -> PageTableIndex {
        PageTableIndex::new_truncate((self.0 >> 12 >> 9) as u16)
    }

    /// Returns the 9-bit level 3 page table index.
    #[inline]
    pub const fn p3_index(self) -> PageTableIndex {
        PageTableIndex::new_truncate((self.0 >> 12 >> 9 >> 9) as u16)
    }

    /// Returns the 9-bit level 4 page table index.
    #[inline]
    pub const fn p4_index(self) -> PageTableIndex {
        PageTableIndex::new_truncate((self.0 >> 12 >> 9 >> 9 >> 9) as u16)
    }

    /// Returns the 9-bit level page table index.
    #[inline]
    pub const fn page_table_index(self, level: PageTableLevel) -> PageTableIndex {
        PageTableIndex::new_truncate((self.0 >> 12 >> ((level as u8 - 1) * 9)) as u16)
    }

    // FIXME: Move this into the `Step` impl, once `Step` is stabilized.
    pub(crate) fn steps_between_impl(start: &Self, end: &Self) -> Option<usize> {
        let mut steps = end.0.checked_sub(start.0)?;

        // Mask away extra bits that appear while jumping the gap.
        steps &= 0xffff_ffff_ffff;

        usize::try_from(steps).ok()
    }

    // FIXME: Move this into the `Step` impl, once `Step` is stabilized.
    #[inline]
    pub(crate) fn forward_checked_impl(start: Self, count: usize) -> Option<Self> {
        let offset = u64::try_from(count).ok()?;
        if offset > ADDRESS_SPACE_SIZE {
            return None;
        }

        let mut addr = start.0.checked_add(offset)?;

        match addr.get_bits(47..) {
            0x1 => {
                // Jump the gap by sign extending the 47th bit.
                addr.set_bits(47.., 0x1ffff);
            }
            0x2 => {
                // Address overflow
                return None;
            }
            _ => {}
        }

        Some(unsafe { Self::new_unsafe(addr) })
    }
}

impl fmt::Debug for VirtAddr {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_tuple("VirtAddr")
            .field(&format_args!("{:#x}", self.0))
            .finish()
    }
}

impl fmt::Binary for VirtAddr {
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Binary::fmt(&self.0, f)
    }
}

impl fmt::LowerHex for VirtAddr {
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::LowerHex::fmt(&self.0, f)
    }
}

impl fmt::Octal for VirtAddr {
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Octal::fmt(&self.0, f)
    }
}

impl fmt::UpperHex for VirtAddr {
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::UpperHex::fmt(&self.0, f)
    }
}

impl fmt::Pointer for VirtAddr {
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Pointer::fmt(&(self.0 as *const ()), f)
    }
}

impl Add<u64> for VirtAddr {
    type Output = Self;
    #[inline]
    fn add(self, rhs: u64) -> Self::Output {
        VirtAddr::new(self.0 + rhs)
    }
}

impl AddAssign<u64> for VirtAddr {
    #[inline]
    fn add_assign(&mut self, rhs: u64) {
        *self = *self + rhs;
    }
}

impl Sub<u64> for VirtAddr {
    type Output = Self;
    #[inline]
    fn sub(self, rhs: u64) -> Self::Output {
        VirtAddr::new(self.0.checked_sub(rhs).unwrap())
    }
}

impl SubAssign<u64> for VirtAddr {
    #[inline]
    fn sub_assign(&mut self, rhs: u64) {
        *self = *self - rhs;
    }
}

impl Sub<VirtAddr> for VirtAddr {
    type Output = u64;
    #[inline]
    fn sub(self, rhs: VirtAddr) -> Self::Output {
        self.as_u64().checked_sub(rhs.as_u64()).unwrap()
    }
}

#[cfg(feature = "step_trait")]
impl Step for VirtAddr {
    #[inline]
    fn steps_between(start: &Self, end: &Self) -> Option<usize> {
        Self::steps_between_impl(start, end)
    }

    #[inline]
    fn forward_checked(start: Self, count: usize) -> Option<Self> {
        Self::forward_checked_impl(start, count)
    }

    #[inline]
    fn backward_checked(start: Self, count: usize) -> Option<Self> {
        let offset = u64::try_from(count).ok()?;
        if offset > ADDRESS_SPACE_SIZE {
            return None;
        }

        let mut addr = start.0.checked_sub(offset)?;

        match addr.get_bits(47..) {
            0x1fffe => {
                // Jump the gap by sign extending the 47th bit.
                addr.set_bits(47.., 0);
            }
            0x1fffd => {
                // Address underflow
                return None;
            }
            _ => {}
        }

        Some(unsafe { Self::new_unsafe(addr) })
    }
}

/// A passed `u64` was not a valid physical address.
///
/// This means that bits 52 to 64 were not all null.
///
/// Contains the invalid address.
pub struct PhysAddrNotValid(pub u64);

impl core::fmt::Debug for PhysAddrNotValid {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_tuple("PhysAddrNotValid")
            .field(&format_args!("{:#x}", self.0))
            .finish()
    }
}

impl PhysAddr {
    /// Creates a new physical address.
    ///
    /// ## Panics
    ///
    /// This function panics if a bit in the range 52 to 64 is set.
    #[inline]
    pub const fn new(addr: u64) -> Self {
        // TODO: Replace with .ok().expect(msg) when that works on stable.
        match Self::try_new(addr) {
            Ok(p) => p,
            Err(_) => panic!("physical addresses must not have any bits in the range 52 to 64 set"),
        }
    }

    /// Creates a new physical address, throwing bits 52..64 away.
    #[inline]
    pub const fn new_truncate(addr: u64) -> PhysAddr {
        PhysAddr(addr % (1 << 52))
    }

    /// Creates a new physical address, without any checks.
    ///
    /// ## Safety
    ///
    /// You must make sure bits 52..64 are zero. This is not checked.
    #[inline]
    pub const unsafe fn new_unsafe(addr: u64) -> PhysAddr {
        PhysAddr(addr)
    }

    /// Tries to create a new physical address.
    ///
    /// Fails if any bits in the range 52 to 64 are set.
    #[inline]
    pub const fn try_new(addr: u64) -> Result<Self, PhysAddrNotValid> {
        let p = Self::new_truncate(addr);
        if p.0 == addr {
            Ok(p)
        } else {
            Err(PhysAddrNotValid(addr))
        }
    }

    /// Creates a physical address that points to `0`.
    #[inline]
    pub const fn zero() -> PhysAddr {
        PhysAddr(0)
    }

    /// Converts the address to an `u64`.
    #[inline]
    pub const fn as_u64(self) -> u64 {
        self.0
    }

    /// Convenience method for checking if a physical address is null.
    #[inline]
    pub const fn is_null(self) -> bool {
        self.0 == 0
    }

    /// Aligns the physical address upwards to the given alignment.
    ///
    /// See the `align_up` function for more information.
    ///
    /// # Panics
    ///
    /// This function panics if the resulting address has a bit in the range 52
    /// to 64 set.
    #[inline]
    pub fn align_up<U>(self, align: U) -> Self
    where
        U: Into<u64>,
    {
        PhysAddr::new(align_up(self.0, align.into()))
    }

    /// Aligns the physical address downwards to the given alignment.
    ///
    /// See the `align_down` function for more information.
    #[inline]
    pub fn align_down<U>(self, align: U) -> Self
    where
        U: Into<u64>,
    {
        PhysAddr(align_down(self.0, align.into()))
    }

    /// Checks whether the physical address has the demanded alignment.
    #[inline]
    pub fn is_aligned<U>(self, align: U) -> bool
    where
        U: Into<u64>,
    {
        self.align_down(align) == self
    }
}

impl fmt::Debug for PhysAddr {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_tuple("PhysAddr")
            .field(&format_args!("{:#x}", self.0))
            .finish()
    }
}

impl fmt::Binary for PhysAddr {
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Binary::fmt(&self.0, f)
    }
}

impl fmt::LowerHex for PhysAddr {
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::LowerHex::fmt(&self.0, f)
    }
}

impl fmt::Octal for PhysAddr {
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Octal::fmt(&self.0, f)
    }
}

impl fmt::UpperHex for PhysAddr {
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::UpperHex::fmt(&self.0, f)
    }
}

impl fmt::Pointer for PhysAddr {
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        fmt::Pointer::fmt(&(self.0 as *const ()), f)
    }
}

impl Add<u64> for PhysAddr {
    type Output = Self;
    #[inline]
    fn add(self, rhs: u64) -> Self::Output {
        PhysAddr::new(self.0 + rhs)
    }
}

impl AddAssign<u64> for PhysAddr {
    #[inline]
    fn add_assign(&mut self, rhs: u64) {
        *self = *self + rhs;
    }
}

impl Sub<u64> for PhysAddr {
    type Output = Self;
    #[inline]
    fn sub(self, rhs: u64) -> Self::Output {
        PhysAddr::new(self.0.checked_sub(rhs).unwrap())
    }
}

impl SubAssign<u64> for PhysAddr {
    #[inline]
    fn sub_assign(&mut self, rhs: u64) {
        *self = *self - rhs;
    }
}

impl Sub<PhysAddr> for PhysAddr {
    type Output = u64;
    #[inline]
    fn sub(self, rhs: PhysAddr) -> Self::Output {
        self.as_u64().checked_sub(rhs.as_u64()).unwrap()
    }
}

/// Align address downwards.
///
/// Returns the greatest `x` with alignment `align` so that `x <= addr`.
///
/// Panics if the alignment is not a power of two.
#[inline]
pub const fn align_down(addr: u64, align: u64) -> u64 {
    assert!(align.is_power_of_two(), "`align` must be a power of two");
    addr & !(align - 1)
}

/// Align address upwards.
///
/// Returns the smallest `x` with alignment `align` so that `x >= addr`.
///
/// Panics if the alignment is not a power of two or if an overflow occurs.
#[inline]
pub const fn align_up(addr: u64, align: u64) -> u64 {
    assert!(align.is_power_of_two(), "`align` must be a power of two");
    let align_mask = align - 1;
    if addr & align_mask == 0 {
        addr // already aligned
    } else {
        // FIXME: Replace with .expect, once `Option::expect` is const.
        if let Some(aligned) = (addr | align_mask).checked_add(1) {
            aligned
        } else {
            panic!("attempt to add with overflow")
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    pub fn virtaddr_new_truncate() {
        assert_eq!(VirtAddr::new_truncate(0), VirtAddr(0));
        assert_eq!(VirtAddr::new_truncate(1 << 47), VirtAddr(0xfffff << 47));
        assert_eq!(VirtAddr::new_truncate(123), VirtAddr(123));
        assert_eq!(VirtAddr::new_truncate(123 << 47), VirtAddr(0xfffff << 47));
    }

    #[test]
    #[cfg(feature = "step_trait")]
    fn virtaddr_step_forward() {
        assert_eq!(Step::forward(VirtAddr(0), 0), VirtAddr(0));
        assert_eq!(Step::forward(VirtAddr(0), 1), VirtAddr(1));
        assert_eq!(
            Step::forward(VirtAddr(0x7fff_ffff_ffff), 1),
            VirtAddr(0xffff_8000_0000_0000)
        );
        assert_eq!(
            Step::forward(VirtAddr(0xffff_8000_0000_0000), 1),
            VirtAddr(0xffff_8000_0000_0001)
        );
        assert_eq!(
            Step::forward_checked(VirtAddr(0xffff_ffff_ffff_ffff), 1),
            None
        );
        assert_eq!(
            Step::forward(VirtAddr(0x7fff_ffff_ffff), 0x1234_5678_9abd),
            VirtAddr(0xffff_9234_5678_9abc)
        );
        assert_eq!(
            Step::forward(VirtAddr(0x7fff_ffff_ffff), 0x8000_0000_0000),
            VirtAddr(0xffff_ffff_ffff_ffff)
        );
        assert_eq!(
            Step::forward(VirtAddr(0x7fff_ffff_ff00), 0x8000_0000_00ff),
            VirtAddr(0xffff_ffff_ffff_ffff)
        );
        assert_eq!(
            Step::forward_checked(VirtAddr(0x7fff_ffff_ff00), 0x8000_0000_0100),
            None
        );
        assert_eq!(
            Step::forward_checked(VirtAddr(0x7fff_ffff_ffff), 0x8000_0000_0001),
            None
        );
    }

    #[test]
    #[cfg(feature = "step_trait")]
    fn virtaddr_step_backward() {
        assert_eq!(Step::backward(VirtAddr(0), 0), VirtAddr(0));
        assert_eq!(Step::backward_checked(VirtAddr(0), 1), None);
        assert_eq!(Step::backward(VirtAddr(1), 1), VirtAddr(0));
        assert_eq!(
            Step::backward(VirtAddr(0xffff_8000_0000_0000), 1),
            VirtAddr(0x7fff_ffff_ffff)
        );
        assert_eq!(
            Step::backward(VirtAddr(0xffff_8000_0000_0001), 1),
            VirtAddr(0xffff_8000_0000_0000)
        );
        assert_eq!(
            Step::backward(VirtAddr(0xffff_9234_5678_9abc), 0x1234_5678_9abd),
            VirtAddr(0x7fff_ffff_ffff)
        );
        assert_eq!(
            Step::backward(VirtAddr(0xffff_8000_0000_0000), 0x8000_0000_0000),
            VirtAddr(0)
        );
        assert_eq!(
            Step::backward(VirtAddr(0xffff_8000_0000_0000), 0x7fff_ffff_ff01),
            VirtAddr(0xff)
        );
        assert_eq!(
            Step::backward_checked(VirtAddr(0xffff_8000_0000_0000), 0x8000_0000_0001),
            None
        );
    }

    #[test]
    #[cfg(feature = "step_trait")]
    fn virtaddr_steps_between() {
        assert_eq!(Step::steps_between(&VirtAddr(0), &VirtAddr(0)), Some(0));
        assert_eq!(Step::steps_between(&VirtAddr(0), &VirtAddr(1)), Some(1));
        assert_eq!(Step::steps_between(&VirtAddr(1), &VirtAddr(0)), None);
        assert_eq!(
            Step::steps_between(
                &VirtAddr(0x7fff_ffff_ffff),
                &VirtAddr(0xffff_8000_0000_0000)
            ),
            Some(1)
        );
        assert_eq!(
            Step::steps_between(
                &VirtAddr(0xffff_8000_0000_0000),
                &VirtAddr(0x7fff_ffff_ffff)
            ),
            None
        );
        assert_eq!(
            Step::steps_between(
                &VirtAddr(0xffff_8000_0000_0000),
                &VirtAddr(0xffff_8000_0000_0000)
            ),
            Some(0)
        );
        assert_eq!(
            Step::steps_between(
                &VirtAddr(0xffff_8000_0000_0000),
                &VirtAddr(0xffff_8000_0000_0001)
            ),
            Some(1)
        );
        assert_eq!(
            Step::steps_between(
                &VirtAddr(0xffff_8000_0000_0001),
                &VirtAddr(0xffff_8000_0000_0000)
            ),
            None
        );
    }

    #[test]
    pub fn test_align_up() {
        // align 1
        assert_eq!(align_up(0, 1), 0);
        assert_eq!(align_up(1234, 1), 1234);
        assert_eq!(align_up(0xffff_ffff_ffff_ffff, 1), 0xffff_ffff_ffff_ffff);
        // align 2
        assert_eq!(align_up(0, 2), 0);
        assert_eq!(align_up(1233, 2), 1234);
        assert_eq!(align_up(0xffff_ffff_ffff_fffe, 2), 0xffff_ffff_ffff_fffe);
        // address 0
        assert_eq!(align_up(0, 128), 0);
        assert_eq!(align_up(0, 1), 0);
        assert_eq!(align_up(0, 2), 0);
        assert_eq!(align_up(0, 0x8000_0000_0000_0000), 0);
    }

    #[test]
    fn test_virt_addr_align_up() {
        // Make sure the 47th bit is extended.
        assert_eq!(
            VirtAddr::new(0x7fff_ffff_ffff).align_up(2u64),
            VirtAddr::new(0xffff_8000_0000_0000)
        );
    }

    #[test]
    fn test_virt_addr_align_down() {
        // Make sure the 47th bit is extended.
        assert_eq!(
            VirtAddr::new(0xffff_8000_0000_0000).align_down(1u64 << 48),
            VirtAddr::new(0)
        );
    }

    #[test]
    #[should_panic]
    fn test_virt_addr_align_up_overflow() {
        VirtAddr::new(0xffff_ffff_ffff_ffff).align_up(2u64);
    }

    #[test]
    #[should_panic]
    fn test_phys_addr_align_up_overflow() {
        PhysAddr::new(0x000f_ffff_ffff_ffff).align_up(2u64);
    }

    #[test]
    fn test_from_ptr_array() {
        let slice = &[1, 2, 3, 4, 5];
        // Make sure that from_ptr(slice) is the address of the first element
        assert_eq!(VirtAddr::from_ptr(slice), VirtAddr::from_ptr(&slice[0]));
    }
}

#[cfg(kani)]
mod proofs {
    use super::*;

    // The next two proof harnesses prove the correctness of the `forward`
    // implementation of VirtAddr.

    // This harness proves that our implementation can correctly take 0 or 1
    // step starting from any address.
    #[kani::proof]
    fn forward_base_case() {
        let start_raw: u64 = kani::any();
        let Ok(start) = VirtAddr::try_new(start_raw) else {
            return;
        };

        // Adding 0 to any address should always yield the same address.
        let same = Step::forward(start, 0);
        assert!(start == same);

        // Manually calculate the expected address after stepping once.
        let expected = match start_raw {
            // Adding 1 to addresses in this range don't require gap jumps, so
            // we can just add 1.
            0x0000_0000_0000_0000..=0x0000_7fff_ffff_fffe => Some(start_raw + 1),
            // Adding 1 to this address jumps the gap.
            0x0000_7fff_ffff_ffff => Some(0xffff_8000_0000_0000),
            // The range of non-canonical addresses.
            0x0000_8000_0000_0000..=0xffff_7fff_ffff_ffff => unreachable!(),
            // Adding 1 to addresses in this range don't require gap jumps, so
            // we can just add 1.
            0xffff_8000_0000_0000..=0xffff_ffff_ffff_fffe => Some(start_raw + 1),
            // Adding 1 to this address causes an overflow.
            0xffff_ffff_ffff_ffff => None,
        };
        if let Some(expected) = expected {
            // Verify that `expected` is a valid address.
            assert!(VirtAddr::try_new(expected).is_ok());
        }
        // Verify `forward_checked`.
        let next = Step::forward_checked(start, 1);
        assert!(next.map(VirtAddr::as_u64) == expected);
    }

    // This harness proves that the result of taking two small steps is the
    // same as taking one combined large step.
    #[kani::proof]
    fn forward_induction_step() {
        let start_raw: u64 = kani::any();
        let Ok(start) = VirtAddr::try_new(start_raw) else {
            return;
        };

        let count1: usize = kani::any();
        let count2: usize = kani::any();
        // If we can take two small steps...
        let Some(next1) = Step::forward_checked(start, count1) else {
            return;
        };
        let Some(next2) = Step::forward_checked(next1, count2) else {
            return;
        };

        // ...then we can also take one combined large step.
        let count_both = count1 + count2;
        let next_both = Step::forward(start, count_both);
        assert!(next2 == next_both);
    }

    // The next two proof harnesses prove the correctness of the `backward`
    // implementation of VirtAddr using the `forward` implementation which
    // we've already proven to be correct.
    // They do this by proving the symmetry between those two functions.

    // This harness proves the correctness of the implementation of `backward`
    // for all inputs for which `forward_checked` succeeds.
    #[kani::proof]
    fn forward_implies_backward() {
        let start_raw: u64 = kani::any();
        let Ok(start) = VirtAddr::try_new(start_raw) else {
            return;
        };
        let count: usize = kani::any();

        // If `forward_checked` succeeds...
        let Some(end) = Step::forward_checked(start, count) else {
            return;
        };

        // ...then `backward` succeeds as well.
        let start2 = Step::backward(end, count);
        assert!(start == start2);
    }

    // This harness proves that for all inputs for which `backward_checked`
    // succeeds, `forward` succeeds as well.
    #[kani::proof]
    fn backward_implies_forward() {
        let end_raw: u64 = kani::any();
        let Ok(end) = VirtAddr::try_new(end_raw) else {
            return;
        };
        let count: usize = kani::any();

        // If `backward_checked` succeeds...
        let Some(start) = Step::backward_checked(end, count) else {
            return;
        };

        // ...then `forward` succeeds as well.
        let end2 = Step::forward(start, count);
        assert!(end == end2);
    }

    // The next two proof harnesses prove the correctness of the
    // `steps_between` implementation of VirtAddr using the `forward`
    // implementation which we've already proven to be correct.
    // They do this by proving the symmetry between those two functions.

    // This harness proves the correctness of the implementation of
    // `steps_between` for all inputs for which `forward_checked` succeeds.
    #[kani::proof]
    fn forward_implies_steps_between() {
        let start: u64 = kani::any();
        let Ok(start) = VirtAddr::try_new(start) else {
            return;
        };
        let count: usize = kani::any();

        // If `forward_checked` succeeds...
        let Some(end) = Step::forward_checked(start, count) else {
            return;
        };

        // ...then `steps_between` succeeds as well.
        assert!(Step::steps_between(&start, &end) == Some(count));
    }

    // This harness proves that for all inputs for which `steps_between`
    // succeeds, `forward` succeeds as well.
    #[kani::proof]
    fn steps_between_implies_forward() {
        let start: u64 = kani::any();
        let Ok(start) = VirtAddr::try_new(start) else {
            return;
        };
        let end: u64 = kani::any();
        let Ok(end) = VirtAddr::try_new(end) else {
            return;
        };

        // If `steps_between` succeeds...
        let Some(count) = Step::steps_between(&start, &end) else {
            return;
        };

        // ...then `forward` succeeds as well.
        assert!(Step::forward(start, count) == end);
    }
}