x86_64/structures/gdt.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
//! Types for the Global Descriptor Table and segment selectors.
pub use crate::registers::segmentation::SegmentSelector;
use crate::structures::tss::TaskStateSegment;
use crate::PrivilegeLevel;
use bit_field::BitField;
use bitflags::bitflags;
use core::fmt;
// imports for intra-doc links
#[cfg(doc)]
use crate::registers::segmentation::{Segment, CS, SS};
#[cfg(feature = "instructions")]
use core::sync::atomic::{AtomicU64 as EntryValue, Ordering};
#[cfg(not(feature = "instructions"))]
use u64 as EntryValue;
/// 8-byte entry in a descriptor table.
///
/// A [`GlobalDescriptorTable`] (or LDT) is an array of these entries, and
/// [`SegmentSelector`]s index into this array. Each [`Descriptor`] in the table
/// uses either 1 Entry (if it is a [`UserSegment`](Descriptor::UserSegment)) or
/// 2 Entries (if it is a [`SystemSegment`](Descriptor::SystemSegment)). This
/// type exists to give users access to the raw entry bits in a GDT.
#[repr(transparent)]
pub struct Entry(EntryValue);
impl Entry {
// Create a new Entry from a raw value.
const fn new(raw: u64) -> Self {
#[cfg(feature = "instructions")]
let raw = EntryValue::new(raw);
Self(raw)
}
/// The raw bits for this entry. Depending on the [`Descriptor`] type, these
/// bits may correspond to those in [`DescriptorFlags`].
pub fn raw(&self) -> u64 {
// TODO: Make this const fn when AtomicU64::load is const.
#[cfg(feature = "instructions")]
let raw = self.0.load(Ordering::SeqCst);
#[cfg(not(feature = "instructions"))]
let raw = self.0;
raw
}
}
impl Clone for Entry {
fn clone(&self) -> Self {
Self::new(self.raw())
}
}
impl PartialEq for Entry {
fn eq(&self, other: &Self) -> bool {
self.raw() == other.raw()
}
}
impl Eq for Entry {}
impl fmt::Debug for Entry {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// Display inner value as hex
write!(f, "Entry({:#018x})", self.raw())
}
}
/// A 64-bit mode global descriptor table (GDT).
///
/// In 64-bit mode, segmentation is not supported. The GDT is used nonetheless, for example for
/// switching between user and kernel mode or for loading a TSS.
///
/// The GDT has a fixed maximum size given by the `MAX` const generic parameter.
/// Overflowing this limit by adding too many [`Descriptor`]s via
/// [`GlobalDescriptorTable::append`] will panic.
///
/// You do **not** need to add a null segment descriptor yourself - this is already done
/// internally. This means you can add up to `MAX - 1` additional [`Entry`]s to
/// this table. Note that some [`Descriptor`]s may take up 2 [`Entry`]s.
///
/// Data segment registers in ring 0 can be loaded with the null segment selector. When running in
/// ring 3, the `ss` register must point to a valid data segment which can be obtained through the
/// [`Descriptor::user_data_segment()`](Descriptor::user_data_segment) function. Code segments must
/// be valid and non-null at all times and can be obtained through the
/// [`Descriptor::kernel_code_segment()`](Descriptor::kernel_code_segment) and
/// [`Descriptor::user_code_segment()`](Descriptor::user_code_segment) in rings 0 and 3
/// respectively.
///
/// For more info, see:
/// [x86 Instruction Reference for `mov`](https://www.felixcloutier.com/x86/mov#64-bit-mode-exceptions),
/// [Intel Manual](https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf),
/// [AMD Manual](https://www.amd.com/system/files/TechDocs/24593.pdf)
///
/// # Example
/// ```
/// use x86_64::structures::gdt::{GlobalDescriptorTable, Descriptor};
///
/// let mut gdt = GlobalDescriptorTable::new();
/// gdt.append(Descriptor::kernel_code_segment());
/// gdt.append(Descriptor::user_code_segment());
/// gdt.append(Descriptor::user_data_segment());
///
/// // Add entry for TSS, call gdt.load() then update segment registers
/// ```
#[derive(Debug, Clone)]
pub struct GlobalDescriptorTable<const MAX: usize = 8> {
table: [Entry; MAX],
len: usize,
}
impl GlobalDescriptorTable {
/// Creates an empty GDT with the default length of 8.
pub const fn new() -> Self {
Self::empty()
}
}
impl<const MAX: usize> GlobalDescriptorTable<MAX> {
/// Creates an empty GDT which can hold `MAX` number of [`Entry`]s.
#[inline]
pub const fn empty() -> Self {
// TODO: Replace with compiler error when feature(generic_const_exprs) is stable.
assert!(MAX > 0, "A GDT cannot have 0 entries");
assert!(MAX <= (1 << 13), "A GDT can only have at most 2^13 entries");
// TODO: Replace with inline_const when it's stable.
#[allow(clippy::declare_interior_mutable_const)]
const NULL: Entry = Entry::new(0);
Self {
table: [NULL; MAX],
len: 1,
}
}
/// Forms a GDT from a slice of `u64`.
///
/// This method allows for creation of a GDT with malformed or invalid
/// entries. However, it is safe because loading a GDT with invalid
/// entires doesn't do anything until those entries are used. For example,
/// [`CS::set_reg`] and [`load_tss`](crate::instructions::tables::load_tss)
/// are both unsafe for this reason.
///
/// Panics if:
/// * the provided slice has more than `MAX` entries
/// * the provided slice is empty
/// * the first entry is not zero
#[cfg_attr(not(feature = "instructions"), allow(rustdoc::broken_intra_doc_links))]
#[inline]
pub const fn from_raw_entries(slice: &[u64]) -> Self {
let len = slice.len();
let mut table = Self::empty().table;
let mut idx = 0;
assert!(len > 0, "cannot initialize GDT with empty slice");
assert!(slice[0] == 0, "first GDT entry must be zero");
assert!(
len <= MAX,
"cannot initialize GDT with slice exceeding the maximum length"
);
while idx < len {
table[idx] = Entry::new(slice[idx]);
idx += 1;
}
Self { table, len }
}
/// Get a reference to the internal [`Entry`] table.
///
/// The resulting slice may contain system descriptors, which span two [`Entry`]s.
#[inline]
pub fn entries(&self) -> &[Entry] {
&self.table[..self.len]
}
/// Appends the given segment descriptor to the GDT, returning the segment selector.
///
/// Note that depending on the type of the [`Descriptor`] this may append
/// either one or two new [`Entry`]s to the table.
///
/// Panics if the GDT doesn't have enough free entries.
#[inline]
#[cfg_attr(feature = "const_fn", rustversion::attr(all(), const))]
pub fn append(&mut self, entry: Descriptor) -> SegmentSelector {
let index = match entry {
Descriptor::UserSegment(value) => {
if self.len > self.table.len().saturating_sub(1) {
panic!("GDT full")
}
self.push(value)
}
Descriptor::SystemSegment(value_low, value_high) => {
if self.len > self.table.len().saturating_sub(2) {
panic!("GDT requires two free spaces to hold a SystemSegment")
}
let index = self.push(value_low);
self.push(value_high);
index
}
};
SegmentSelector::new(index as u16, entry.dpl())
}
/// Loads the GDT in the CPU using the `lgdt` instruction. This does **not** alter any of the
/// segment registers; you **must** (re)load them yourself using [the appropriate
/// functions](crate::instructions::segmentation):
/// [`SS::set_reg()`] and [`CS::set_reg()`].
#[cfg(feature = "instructions")]
#[inline]
pub fn load(&'static self) {
// SAFETY: static lifetime ensures no modification after loading.
unsafe { self.load_unsafe() };
}
/// Loads the GDT in the CPU using the `lgdt` instruction. This does **not** alter any of the
/// segment registers; you **must** (re)load them yourself using [the appropriate
/// functions](crate::instructions::segmentation):
/// [`SS::set_reg()`] and [`CS::set_reg()`].
///
/// # Safety
///
/// Unlike `load` this function will not impose a static lifetime constraint
/// this means its up to the user to ensure that there will be no modifications
/// after loading and that the GDT will live for as long as it's loaded.
///
#[cfg(feature = "instructions")]
#[inline]
pub unsafe fn load_unsafe(&self) {
use crate::instructions::tables::lgdt;
unsafe {
lgdt(&self.pointer());
}
}
#[inline]
#[cfg_attr(feature = "const_fn", rustversion::attr(all(), const))]
fn push(&mut self, value: u64) -> usize {
let index = self.len;
self.table[index] = Entry::new(value);
self.len += 1;
index
}
/// Creates the descriptor pointer for this table. This pointer can only be
/// safely used if the table is never modified or destroyed while in use.
#[cfg(feature = "instructions")]
fn pointer(&self) -> super::DescriptorTablePointer {
use core::mem::size_of;
super::DescriptorTablePointer {
base: crate::VirtAddr::new(self.table.as_ptr() as u64),
// 0 < self.next_free <= MAX <= 2^13, so the limit calculation
// will not underflow or overflow.
limit: (self.len * size_of::<u64>() - 1) as u16,
}
}
}
/// A 64-bit mode segment descriptor.
///
/// Segmentation is no longer supported in 64-bit mode, so most of the descriptor
/// contents are ignored.
#[derive(Debug, Clone, Copy)]
pub enum Descriptor {
/// Descriptor for a code or data segment.
///
/// Since segmentation is no longer supported in 64-bit mode, almost all of
/// code and data descriptors is ignored. Only some flags are still used.
UserSegment(u64),
/// A system segment descriptor such as a LDT or TSS descriptor.
SystemSegment(u64, u64),
}
bitflags! {
/// Flags for a GDT descriptor. Not all flags are valid for all descriptor types.
#[derive(PartialEq, Eq, PartialOrd, Ord, Hash, Debug, Clone, Copy)]
pub struct DescriptorFlags: u64 {
/// Set by the processor if this segment has been accessed. Only cleared by software.
/// _Setting_ this bit in software prevents GDT writes on first use.
const ACCESSED = 1 << 40;
/// For 32-bit data segments, sets the segment as writable. For 32-bit code segments,
/// sets the segment as _readable_. In 64-bit mode, ignored for all segments.
const WRITABLE = 1 << 41;
/// For code segments, sets the segment as “conforming”, influencing the
/// privilege checks that occur on control transfers. For 32-bit data segments,
/// sets the segment as "expand down". In 64-bit mode, ignored for data segments.
const CONFORMING = 1 << 42;
/// This flag must be set for code segments and unset for data segments.
const EXECUTABLE = 1 << 43;
/// This flag must be set for user segments (in contrast to system segments).
const USER_SEGMENT = 1 << 44;
/// These two bits encode the Descriptor Privilege Level (DPL) for this descriptor.
/// If both bits are set, the DPL is Ring 3, if both are unset, the DPL is Ring 0.
const DPL_RING_3 = 3 << 45;
/// Must be set for any segment, causes a segment not present exception if not set.
const PRESENT = 1 << 47;
/// Available for use by the Operating System
const AVAILABLE = 1 << 52;
/// Must be set for 64-bit code segments, unset otherwise.
const LONG_MODE = 1 << 53;
/// Use 32-bit (as opposed to 16-bit) operands. If [`LONG_MODE`][Self::LONG_MODE] is set,
/// this must be unset. In 64-bit mode, ignored for data segments.
const DEFAULT_SIZE = 1 << 54;
/// Limit field is scaled by 4096 bytes. In 64-bit mode, ignored for all segments.
const GRANULARITY = 1 << 55;
/// Bits `0..=15` of the limit field (ignored in 64-bit mode)
const LIMIT_0_15 = 0xFFFF;
/// Bits `16..=19` of the limit field (ignored in 64-bit mode)
const LIMIT_16_19 = 0xF << 48;
/// Bits `0..=23` of the base field (ignored in 64-bit mode, except for fs and gs)
const BASE_0_23 = 0xFF_FFFF << 16;
/// Bits `24..=31` of the base field (ignored in 64-bit mode, except for fs and gs)
const BASE_24_31 = 0xFF << 56;
}
}
/// The following constants define default values for common GDT entries. They
/// are all "flat" segments, meaning they can access the entire address space.
/// These values all set [`WRITABLE`][DescriptorFlags::WRITABLE] and
/// [`ACCESSED`][DescriptorFlags::ACCESSED]. They also match the values loaded
/// by the `syscall`/`sysret` and `sysenter`/`sysexit` instructions.
///
/// In short, these values disable segmentation, permission checks, and access
/// tracking at the GDT level. Kernels using these values should use paging to
/// implement this functionality.
impl DescriptorFlags {
// Flags that we set for all our default segments
const COMMON: Self = Self::from_bits_truncate(
Self::USER_SEGMENT.bits()
| Self::PRESENT.bits()
| Self::WRITABLE.bits()
| Self::ACCESSED.bits()
| Self::LIMIT_0_15.bits()
| Self::LIMIT_16_19.bits()
| Self::GRANULARITY.bits(),
);
/// A kernel data segment (64-bit or flat 32-bit)
pub const KERNEL_DATA: Self =
Self::from_bits_truncate(Self::COMMON.bits() | Self::DEFAULT_SIZE.bits());
/// A flat 32-bit kernel code segment
pub const KERNEL_CODE32: Self = Self::from_bits_truncate(
Self::COMMON.bits() | Self::EXECUTABLE.bits() | Self::DEFAULT_SIZE.bits(),
);
/// A 64-bit kernel code segment
pub const KERNEL_CODE64: Self = Self::from_bits_truncate(
Self::COMMON.bits() | Self::EXECUTABLE.bits() | Self::LONG_MODE.bits(),
);
/// A user data segment (64-bit or flat 32-bit)
pub const USER_DATA: Self =
Self::from_bits_truncate(Self::KERNEL_DATA.bits() | Self::DPL_RING_3.bits());
/// A flat 32-bit user code segment
pub const USER_CODE32: Self =
Self::from_bits_truncate(Self::KERNEL_CODE32.bits() | Self::DPL_RING_3.bits());
/// A 64-bit user code segment
pub const USER_CODE64: Self =
Self::from_bits_truncate(Self::KERNEL_CODE64.bits() | Self::DPL_RING_3.bits());
}
impl Descriptor {
/// Returns the Descriptor Privilege Level (DPL). When using this descriptor
/// via a [`SegmentSelector`], the RPL and Current Privilege Level (CPL)
/// must less than or equal to the DPL, except for stack segments where the
/// RPL, CPL, and DPL must all be equal.
#[inline]
pub const fn dpl(self) -> PrivilegeLevel {
let value_low = match self {
Descriptor::UserSegment(v) => v,
Descriptor::SystemSegment(v, _) => v,
};
let dpl = (value_low & DescriptorFlags::DPL_RING_3.bits()) >> 45;
PrivilegeLevel::from_u16(dpl as u16)
}
/// Creates a segment descriptor for a 64-bit kernel code segment. Suitable
/// for use with `syscall` or 64-bit `sysenter`.
#[inline]
pub const fn kernel_code_segment() -> Descriptor {
Descriptor::UserSegment(DescriptorFlags::KERNEL_CODE64.bits())
}
/// Creates a segment descriptor for a kernel data segment (32-bit or
/// 64-bit). Suitable for use with `syscall` or `sysenter`.
#[inline]
pub const fn kernel_data_segment() -> Descriptor {
Descriptor::UserSegment(DescriptorFlags::KERNEL_DATA.bits())
}
/// Creates a segment descriptor for a ring 3 data segment (32-bit or
/// 64-bit). Suitable for use with `sysret` or `sysexit`.
#[inline]
pub const fn user_data_segment() -> Descriptor {
Descriptor::UserSegment(DescriptorFlags::USER_DATA.bits())
}
/// Creates a segment descriptor for a 64-bit ring 3 code segment. Suitable
/// for use with `sysret` or `sysexit`.
#[inline]
pub const fn user_code_segment() -> Descriptor {
Descriptor::UserSegment(DescriptorFlags::USER_CODE64.bits())
}
/// Creates a TSS system descriptor for the given TSS.
///
/// While it is possible to create multiple Descriptors that point to the
/// same TSS, this generally isn't recommended, as the TSS usually contains
/// per-CPU information such as the RSP and IST pointers. Instead, there
/// should be exactly one TSS and one corresponding TSS Descriptor per CPU.
/// Then, each of these descriptors should be placed in a GDT (which can
/// either be global or per-CPU).
#[inline]
pub fn tss_segment(tss: &'static TaskStateSegment) -> Descriptor {
// SAFETY: The pointer is derived from a &'static reference, which ensures its validity.
unsafe { Self::tss_segment_unchecked(tss) }
}
/// Similar to [`Descriptor::tss_segment`], but unsafe since it does not enforce a lifetime
/// constraint on the provided TSS.
///
/// # Safety
/// The caller must ensure that the passed pointer is valid for as long as the descriptor is
/// being used.
#[inline]
pub unsafe fn tss_segment_unchecked(tss: *const TaskStateSegment) -> Descriptor {
use self::DescriptorFlags as Flags;
use core::mem::size_of;
let ptr = tss as u64;
let mut low = Flags::PRESENT.bits();
// base
low.set_bits(16..40, ptr.get_bits(0..24));
low.set_bits(56..64, ptr.get_bits(24..32));
// limit (the `-1` in needed since the bound is inclusive)
low.set_bits(0..16, (size_of::<TaskStateSegment>() - 1) as u64);
// type (0b1001 = available 64-bit tss)
low.set_bits(40..44, 0b1001);
let mut high = 0;
high.set_bits(0..32, ptr.get_bits(32..64));
Descriptor::SystemSegment(low, high)
}
}
#[cfg(test)]
mod tests {
use super::DescriptorFlags as Flags;
use super::*;
#[test]
#[rustfmt::skip]
pub fn linux_kernel_defaults() {
// Make sure our defaults match the ones used by the Linux kernel.
// Constants pulled from an old version of arch/x86/kernel/cpu/common.c
assert_eq!(Flags::KERNEL_CODE64.bits(), 0x00af9b000000ffff);
assert_eq!(Flags::KERNEL_CODE32.bits(), 0x00cf9b000000ffff);
assert_eq!(Flags::KERNEL_DATA.bits(), 0x00cf93000000ffff);
assert_eq!(Flags::USER_CODE64.bits(), 0x00affb000000ffff);
assert_eq!(Flags::USER_CODE32.bits(), 0x00cffb000000ffff);
assert_eq!(Flags::USER_DATA.bits(), 0x00cff3000000ffff);
}
// Makes a GDT that has two free slots
fn make_six_entry_gdt() -> GlobalDescriptorTable {
let mut gdt = GlobalDescriptorTable::new();
gdt.append(Descriptor::kernel_code_segment());
gdt.append(Descriptor::kernel_data_segment());
gdt.append(Descriptor::UserSegment(DescriptorFlags::USER_CODE32.bits()));
gdt.append(Descriptor::user_data_segment());
gdt.append(Descriptor::user_code_segment());
assert_eq!(gdt.len, 6);
gdt
}
static TSS: TaskStateSegment = TaskStateSegment::new();
fn make_full_gdt() -> GlobalDescriptorTable {
let mut gdt = make_six_entry_gdt();
gdt.append(Descriptor::tss_segment(&TSS));
assert_eq!(gdt.len, 8);
gdt
}
#[test]
pub fn push_max_segments() {
// Make sure we don't panic with user segments
let mut gdt = make_six_entry_gdt();
gdt.append(Descriptor::user_data_segment());
assert_eq!(gdt.len, 7);
gdt.append(Descriptor::user_data_segment());
assert_eq!(gdt.len, 8);
// Make sure we don't panic with system segments
let _ = make_full_gdt();
}
#[test]
#[should_panic]
pub fn panic_user_segment() {
let mut gdt = make_full_gdt();
gdt.append(Descriptor::user_data_segment());
}
#[test]
#[should_panic]
pub fn panic_system_segment() {
let mut gdt = make_six_entry_gdt();
gdt.append(Descriptor::user_data_segment());
// We have one free slot, but the GDT requires two
gdt.append(Descriptor::tss_segment(&TSS));
}
#[test]
pub fn from_entries() {
let raw = [0, Flags::KERNEL_CODE64.bits(), Flags::KERNEL_DATA.bits()];
let gdt = GlobalDescriptorTable::<3>::from_raw_entries(&raw);
assert_eq!(gdt.table.len(), 3);
assert_eq!(gdt.entries().len(), 3);
}
#[test]
pub fn descriptor_dpl() {
assert_eq!(
Descriptor::kernel_code_segment().dpl(),
PrivilegeLevel::Ring0
);
assert_eq!(
Descriptor::kernel_data_segment().dpl(),
PrivilegeLevel::Ring0
);
assert_eq!(Descriptor::user_code_segment().dpl(), PrivilegeLevel::Ring3);
assert_eq!(Descriptor::user_code_segment().dpl(), PrivilegeLevel::Ring3);
}
}