x86_64/structures/paging/mapper/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
//! Abstractions for reading and modifying the mapping of pages.
pub use self::mapped_page_table::{MappedPageTable, PageTableFrameMapping};
#[cfg(target_pointer_width = "64")]
pub use self::offset_page_table::OffsetPageTable;
#[cfg(feature = "instructions")]
pub use self::recursive_page_table::{InvalidPageTable, RecursivePageTable};
use crate::structures::paging::{
frame_alloc::{FrameAllocator, FrameDeallocator},
page::PageRangeInclusive,
page_table::PageTableFlags,
Page, PageSize, PhysFrame, Size1GiB, Size2MiB, Size4KiB,
};
use crate::{PhysAddr, VirtAddr};
mod mapped_page_table;
mod offset_page_table;
#[cfg(feature = "instructions")]
mod recursive_page_table;
/// An empty convencience trait that requires the `Mapper` trait for all page sizes.
pub trait MapperAllSizes: Mapper<Size4KiB> + Mapper<Size2MiB> + Mapper<Size1GiB> {}
impl<T> MapperAllSizes for T where T: Mapper<Size4KiB> + Mapper<Size2MiB> + Mapper<Size1GiB> {}
/// Provides methods for translating virtual addresses.
pub trait Translate {
/// Return the frame that the given virtual address is mapped to and the offset within that
/// frame.
///
/// If the given address has a valid mapping, the mapped frame and the offset within that
/// frame is returned. Otherwise an error value is returned.
///
/// This function works with huge pages of all sizes.
fn translate(&self, addr: VirtAddr) -> TranslateResult;
/// Translates the given virtual address to the physical address that it maps to.
///
/// Returns `None` if there is no valid mapping for the given address.
///
/// This is a convenience method. For more information about a mapping see the
/// [`translate`](Translate::translate) method.
#[inline]
fn translate_addr(&self, addr: VirtAddr) -> Option<PhysAddr> {
match self.translate(addr) {
TranslateResult::NotMapped | TranslateResult::InvalidFrameAddress(_) => None,
TranslateResult::Mapped { frame, offset, .. } => Some(frame.start_address() + offset),
}
}
}
/// The return value of the [`Translate::translate`] function.
///
/// If the given address has a valid mapping, a `Frame4KiB`, `Frame2MiB`, or `Frame1GiB` variant
/// is returned, depending on the size of the mapped page. The remaining variants indicate errors.
#[derive(Debug)]
pub enum TranslateResult {
/// The virtual address is mapped to a physical frame.
Mapped {
/// The mapped frame.
frame: MappedFrame,
/// The offset within the mapped frame.
offset: u64,
/// The entry flags in the lowest-level page table.
///
/// Flags of higher-level page table entries are not included here, but they can still
/// affect the effective flags for an address, for example when the WRITABLE flag is not
/// set for a level 3 entry.
flags: PageTableFlags,
},
/// The given virtual address is not mapped to a physical frame.
NotMapped,
/// The page table entry for the given virtual address points to an invalid physical address.
InvalidFrameAddress(PhysAddr),
}
/// Represents a physical frame mapped in a page table.
#[derive(Debug)]
pub enum MappedFrame {
/// The virtual address is mapped to a 4KiB frame.
Size4KiB(PhysFrame<Size4KiB>),
/// The virtual address is mapped to a "large" 2MiB frame.
Size2MiB(PhysFrame<Size2MiB>),
/// The virtual address is mapped to a "huge" 1GiB frame.
Size1GiB(PhysFrame<Size1GiB>),
}
impl MappedFrame {
/// Returns the start address of the frame.
pub const fn start_address(&self) -> PhysAddr {
match self {
MappedFrame::Size4KiB(frame) => frame.start_address,
MappedFrame::Size2MiB(frame) => frame.start_address,
MappedFrame::Size1GiB(frame) => frame.start_address,
}
}
/// Returns the size the frame (4KB, 2MB or 1GB).
pub const fn size(&self) -> u64 {
match self {
MappedFrame::Size4KiB(_) => Size4KiB::SIZE,
MappedFrame::Size2MiB(_) => Size2MiB::SIZE,
MappedFrame::Size1GiB(_) => Size1GiB::SIZE,
}
}
}
/// A trait for common page table operations on pages of size `S`.
pub trait Mapper<S: PageSize> {
/// Creates a new mapping in the page table.
///
/// This function might need additional physical frames to create new page tables. These
/// frames are allocated from the `allocator` argument. At most three frames are required.
///
/// Parent page table entries are automatically updated with `PRESENT | WRITABLE | USER_ACCESSIBLE`
/// if present in the `PageTableFlags`. Depending on the used mapper implementation
/// the `PRESENT` and `WRITABLE` flags might be set for parent tables,
/// even if they are not set in `PageTableFlags`.
///
/// The `map_to_with_table_flags` method gives explicit control over the parent page table flags.
///
/// ## Safety
///
/// Creating page table mappings is a fundamentally unsafe operation because
/// there are various ways to break memory safety through it. For example,
/// re-mapping an in-use page to a different frame changes and invalidates
/// all values stored in that page, resulting in undefined behavior on the
/// next use.
///
/// The caller must ensure that no undefined behavior or memory safety
/// violations can occur through the new mapping. Among other things, the
/// caller must prevent the following:
///
/// - Aliasing of `&mut` references, i.e. two `&mut` references that point to
/// the same physical address. This is undefined behavior in Rust.
/// - This can be ensured by mapping each page to an individual physical
/// frame that is not mapped anywhere else.
/// - Creating uninitialized or invalid values: Rust requires that all values
/// have a correct memory layout. For example, a `bool` must be either a 0
/// or a 1 in memory, but not a 3 or 4. An exception is the `MaybeUninit`
/// wrapper type, which abstracts over possibly uninitialized memory.
/// - This is only a problem when re-mapping pages to different physical
/// frames. Mapping a page that is not in use yet is fine.
///
/// Special care must be taken when sharing pages with other address spaces,
/// e.g. by setting the `GLOBAL` flag. For example, a global mapping must be
/// the same in all address spaces, otherwise undefined behavior can occur
/// because of TLB races. It's worth noting that all the above requirements
/// also apply to shared mappings, including the aliasing requirements.
///
/// # Examples
///
/// Create a USER_ACCESSIBLE mapping:
///
/// ```
/// # #[cfg(feature = "instructions")]
/// # use x86_64::structures::paging::{
/// # Mapper, Page, PhysFrame, FrameAllocator,
/// # Size4KiB, OffsetPageTable, page_table::PageTableFlags
/// # };
/// # #[cfg(feature = "instructions")]
/// # unsafe fn test(mapper: &mut OffsetPageTable, frame_allocator: &mut impl FrameAllocator<Size4KiB>,
/// # page: Page<Size4KiB>, frame: PhysFrame) {
/// mapper
/// .map_to(
/// page,
/// frame,
/// PageTableFlags::PRESENT
/// | PageTableFlags::WRITABLE
/// | PageTableFlags::USER_ACCESSIBLE,
/// frame_allocator,
/// )
/// .unwrap()
/// .flush();
/// # }
/// ```
#[inline]
unsafe fn map_to<A>(
&mut self,
page: Page<S>,
frame: PhysFrame<S>,
flags: PageTableFlags,
frame_allocator: &mut A,
) -> Result<MapperFlush<S>, MapToError<S>>
where
Self: Sized,
A: FrameAllocator<Size4KiB> + ?Sized,
{
let parent_table_flags = flags
& (PageTableFlags::PRESENT
| PageTableFlags::WRITABLE
| PageTableFlags::USER_ACCESSIBLE);
unsafe {
self.map_to_with_table_flags(page, frame, flags, parent_table_flags, frame_allocator)
}
}
/// Creates a new mapping in the page table.
///
/// This function might need additional physical frames to create new page tables. These
/// frames are allocated from the `allocator` argument. At most three frames are required.
///
/// The flags of the parent table(s) can be explicitly specified. Those flags are used for
/// newly created table entries, and for existing entries the flags are added.
///
/// Depending on the used mapper implementation, the `PRESENT` and `WRITABLE` flags might
/// be set for parent tables, even if they are not specified in `parent_table_flags`.
///
/// ## Safety
///
/// Creating page table mappings is a fundamentally unsafe operation because
/// there are various ways to break memory safety through it. For example,
/// re-mapping an in-use page to a different frame changes and invalidates
/// all values stored in that page, resulting in undefined behavior on the
/// next use.
///
/// The caller must ensure that no undefined behavior or memory safety
/// violations can occur through the new mapping. Among other things, the
/// caller must prevent the following:
///
/// - Aliasing of `&mut` references, i.e. two `&mut` references that point to
/// the same physical address. This is undefined behavior in Rust.
/// - This can be ensured by mapping each page to an individual physical
/// frame that is not mapped anywhere else.
/// - Creating uninitialized or invalid values: Rust requires that all values
/// have a correct memory layout. For example, a `bool` must be either a 0
/// or a 1 in memory, but not a 3 or 4. An exception is the `MaybeUninit`
/// wrapper type, which abstracts over possibly uninitialized memory.
/// - This is only a problem when re-mapping pages to different physical
/// frames. Mapping a page that is not in use yet is fine.
///
/// Special care must be taken when sharing pages with other address spaces,
/// e.g. by setting the `GLOBAL` flag. For example, a global mapping must be
/// the same in all address spaces, otherwise undefined behavior can occur
/// because of TLB races. It's worth noting that all the above requirements
/// also apply to shared mappings, including the aliasing requirements.
///
/// # Examples
///
/// Create USER_ACCESSIBLE | NO_EXECUTE | NO_CACHE mapping and update
/// the top hierarchy only with USER_ACCESSIBLE:
///
/// ```
/// # #[cfg(feature = "instructions")]
/// # use x86_64::structures::paging::{
/// # Mapper, PhysFrame, Page, FrameAllocator,
/// # Size4KiB, OffsetPageTable, page_table::PageTableFlags
/// # };
/// # #[cfg(feature = "instructions")]
/// # unsafe fn test(mapper: &mut OffsetPageTable, frame_allocator: &mut impl FrameAllocator<Size4KiB>,
/// # page: Page<Size4KiB>, frame: PhysFrame) {
/// mapper
/// .map_to_with_table_flags(
/// page,
/// frame,
/// PageTableFlags::PRESENT
/// | PageTableFlags::WRITABLE
/// | PageTableFlags::USER_ACCESSIBLE
/// | PageTableFlags::NO_EXECUTE
/// | PageTableFlags::NO_CACHE,
/// PageTableFlags::USER_ACCESSIBLE,
/// frame_allocator,
/// )
/// .unwrap()
/// .flush();
/// # }
/// ```
unsafe fn map_to_with_table_flags<A>(
&mut self,
page: Page<S>,
frame: PhysFrame<S>,
flags: PageTableFlags,
parent_table_flags: PageTableFlags,
frame_allocator: &mut A,
) -> Result<MapperFlush<S>, MapToError<S>>
where
Self: Sized,
A: FrameAllocator<Size4KiB> + ?Sized;
/// Removes a mapping from the page table and returns the frame that used to be mapped.
///
/// Note that no page tables or pages are deallocated.
fn unmap(&mut self, page: Page<S>) -> Result<(PhysFrame<S>, MapperFlush<S>), UnmapError>;
/// Updates the flags of an existing mapping.
///
/// To read the current flags of a mapped page, use the [`Translate::translate`] method.
///
/// ## Safety
///
/// This method is unsafe because changing the flags of a mapping
/// might result in undefined behavior. For example, setting the
/// `GLOBAL` and `WRITABLE` flags for a page might result in the corruption
/// of values stored in that page from processes running in other address
/// spaces.
unsafe fn update_flags(
&mut self,
page: Page<S>,
flags: PageTableFlags,
) -> Result<MapperFlush<S>, FlagUpdateError>;
/// Set the flags of an existing page level 4 table entry
///
/// ## Safety
///
/// This method is unsafe because changing the flags of a mapping
/// might result in undefined behavior. For example, setting the
/// `GLOBAL` and `WRITABLE` flags for a page might result in the corruption
/// of values stored in that page from processes running in other address
/// spaces.
unsafe fn set_flags_p4_entry(
&mut self,
page: Page<S>,
flags: PageTableFlags,
) -> Result<MapperFlushAll, FlagUpdateError>;
/// Set the flags of an existing page table level 3 entry
///
/// ## Safety
///
/// This method is unsafe because changing the flags of a mapping
/// might result in undefined behavior. For example, setting the
/// `GLOBAL` and `WRITABLE` flags for a page might result in the corruption
/// of values stored in that page from processes running in other address
/// spaces.
unsafe fn set_flags_p3_entry(
&mut self,
page: Page<S>,
flags: PageTableFlags,
) -> Result<MapperFlushAll, FlagUpdateError>;
/// Set the flags of an existing page table level 2 entry
///
/// ## Safety
///
/// This method is unsafe because changing the flags of a mapping
/// might result in undefined behavior. For example, setting the
/// `GLOBAL` and `WRITABLE` flags for a page might result in the corruption
/// of values stored in that page from processes running in other address
/// spaces.
unsafe fn set_flags_p2_entry(
&mut self,
page: Page<S>,
flags: PageTableFlags,
) -> Result<MapperFlushAll, FlagUpdateError>;
/// Return the frame that the specified page is mapped to.
///
/// This function assumes that the page is mapped to a frame of size `S` and returns an
/// error otherwise.
fn translate_page(&self, page: Page<S>) -> Result<PhysFrame<S>, TranslateError>;
/// Maps the given frame to the virtual page with the same address.
///
/// ## Safety
///
/// This is a convencience function that invokes [`Mapper::map_to`] internally, so
/// all safety requirements of it also apply for this function.
#[inline]
unsafe fn identity_map<A>(
&mut self,
frame: PhysFrame<S>,
flags: PageTableFlags,
frame_allocator: &mut A,
) -> Result<MapperFlush<S>, MapToError<S>>
where
Self: Sized,
A: FrameAllocator<Size4KiB> + ?Sized,
S: PageSize,
Self: Mapper<S>,
{
let page = Page::containing_address(VirtAddr::new(frame.start_address().as_u64()));
unsafe { self.map_to(page, frame, flags, frame_allocator) }
}
}
/// This type represents a page whose mapping has changed in the page table.
///
/// The old mapping might be still cached in the translation lookaside buffer (TLB), so it needs
/// to be flushed from the TLB before it's accessed. This type is returned from a function that
/// changed the mapping of a page to ensure that the TLB flush is not forgotten.
#[derive(Debug)]
#[must_use = "Page Table changes must be flushed or ignored."]
pub struct MapperFlush<S: PageSize>(Page<S>);
impl<S: PageSize> MapperFlush<S> {
/// Create a new flush promise
///
/// Note that this method is intended for implementing the [`Mapper`] trait and no other uses
/// are expected.
#[inline]
pub fn new(page: Page<S>) -> Self {
MapperFlush(page)
}
/// Flush the page from the TLB to ensure that the newest mapping is used.
#[cfg(feature = "instructions")]
#[inline]
pub fn flush(self) {
crate::instructions::tlb::flush(self.0.start_address());
}
/// Don't flush the TLB and silence the “must be used” warning.
#[inline]
pub fn ignore(self) {}
}
/// This type represents a change of a page table requiring a complete TLB flush
///
/// The old mapping might be still cached in the translation lookaside buffer (TLB), so it needs
/// to be flushed from the TLB before it's accessed. This type is returned from a function that
/// made the change to ensure that the TLB flush is not forgotten.
#[derive(Debug, Default)]
#[must_use = "Page Table changes must be flushed or ignored."]
pub struct MapperFlushAll(());
impl MapperFlushAll {
/// Create a new flush promise
///
/// Note that this method is intended for implementing the [`Mapper`] trait and no other uses
/// are expected.
#[inline]
pub fn new() -> Self {
MapperFlushAll(())
}
/// Flush all pages from the TLB to ensure that the newest mapping is used.
#[cfg(feature = "instructions")]
#[inline]
pub fn flush_all(self) {
crate::instructions::tlb::flush_all()
}
/// Don't flush the TLB and silence the “must be used” warning.
#[inline]
pub fn ignore(self) {}
}
/// This error is returned from `map_to` and similar methods.
#[derive(Debug)]
pub enum MapToError<S: PageSize> {
/// An additional frame was needed for the mapping process, but the frame allocator
/// returned `None`.
FrameAllocationFailed,
/// An upper level page table entry has the `HUGE_PAGE` flag set, which means that the
/// given page is part of an already mapped huge page.
ParentEntryHugePage,
/// The given page is already mapped to a physical frame.
PageAlreadyMapped(PhysFrame<S>),
}
/// An error indicating that an `unmap` call failed.
#[derive(Debug)]
pub enum UnmapError {
/// An upper level page table entry has the `HUGE_PAGE` flag set, which means that the
/// given page is part of a huge page and can't be freed individually.
ParentEntryHugePage,
/// The given page is not mapped to a physical frame.
PageNotMapped,
/// The page table entry for the given page points to an invalid physical address.
InvalidFrameAddress(PhysAddr),
}
/// An error indicating that an `update_flags` call failed.
#[derive(Debug)]
pub enum FlagUpdateError {
/// The given page is not mapped to a physical frame.
PageNotMapped,
/// An upper level page table entry has the `HUGE_PAGE` flag set, which means that the
/// given page is part of a huge page and can't be freed individually.
ParentEntryHugePage,
}
/// An error indicating that an `translate` call failed.
#[derive(Debug)]
pub enum TranslateError {
/// The given page is not mapped to a physical frame.
PageNotMapped,
/// An upper level page table entry has the `HUGE_PAGE` flag set, which means that the
/// given page is part of a huge page and can't be freed individually.
ParentEntryHugePage,
/// The page table entry for the given page points to an invalid physical address.
InvalidFrameAddress(PhysAddr),
}
static _ASSERT_OBJECT_SAFE: Option<&(dyn Translate + Sync)> = None;
/// Provides methods for cleaning up unused entries.
pub trait CleanUp {
/// Remove all empty P1-P3 tables
///
/// ## Safety
///
/// The caller has to guarantee that it's safe to free page table frames:
/// All page table frames must only be used once and only in this page table
/// (e.g. no reference counted page tables or reusing the same page tables for different virtual addresses ranges in the same page table).
unsafe fn clean_up<D>(&mut self, frame_deallocator: &mut D)
where
D: FrameDeallocator<Size4KiB>;
/// Remove all empty P1-P3 tables in a certain range
/// ```
/// # use core::ops::RangeInclusive;
/// # use x86_64::{VirtAddr, structures::paging::{
/// # FrameDeallocator, Size4KiB, mapper::CleanUp, page::Page,
/// # }};
/// # unsafe fn test(page_table: &mut impl CleanUp, frame_deallocator: &mut impl FrameDeallocator<Size4KiB>) {
/// // clean up all page tables in the lower half of the address space
/// let lower_half = Page::range_inclusive(
/// Page::containing_address(VirtAddr::new(0)),
/// Page::containing_address(VirtAddr::new(0x0000_7fff_ffff_ffff)),
/// );
/// page_table.clean_up_addr_range(lower_half, frame_deallocator);
/// # }
/// ```
///
/// ## Safety
///
/// The caller has to guarantee that it's safe to free page table frames:
/// All page table frames must only be used once and only in this page table
/// (e.g. no reference counted page tables or reusing the same page tables for different virtual addresses ranges in the same page table).
unsafe fn clean_up_addr_range<D>(
&mut self,
range: PageRangeInclusive,
frame_deallocator: &mut D,
) where
D: FrameDeallocator<Size4KiB>;
}