zerocopy/lib.rs
1// Copyright 2018 The Fuchsia Authors
2//
3// Licensed under the 2-Clause BSD License <LICENSE-BSD or
4// https://opensource.org/license/bsd-2-clause>, Apache License, Version 2.0
5// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
6// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
7// This file may not be copied, modified, or distributed except according to
8// those terms.
9
10// After updating the following doc comment, make sure to run the following
11// command to update `README.md` based on its contents:
12//
13// cargo -q run --manifest-path tools/Cargo.toml -p generate-readme > README.md
14
15//! ***<span style="font-size: 140%">Fast, safe, <span
16//! style="color:red;">compile error</span>. Pick two.</span>***
17//!
18//! Zerocopy makes zero-cost memory manipulation effortless. We write `unsafe`
19//! so you don't have to.
20//!
21//! *For an overview of what's changed from zerocopy 0.7, check out our [release
22//! notes][release-notes], which include a step-by-step upgrading guide.*
23//!
24//! *Have questions? Need more out of zerocopy? Submit a [customer request
25//! issue][customer-request-issue] or ask the maintainers on
26//! [GitHub][github-q-a] or [Discord][discord]!*
27//!
28//! [customer-request-issue]: https://github.com/google/zerocopy/issues/new/choose
29//! [release-notes]: https://github.com/google/zerocopy/discussions/1680
30//! [github-q-a]: https://github.com/google/zerocopy/discussions/categories/q-a
31//! [discord]: https://discord.gg/MAvWH2R6zk
32//!
33//! # Overview
34//!
35//! ##### Conversion Traits
36//!
37//! Zerocopy provides four derivable traits for zero-cost conversions:
38//! - [`TryFromBytes`] indicates that a type may safely be converted from
39//! certain byte sequences (conditional on runtime checks)
40//! - [`FromZeros`] indicates that a sequence of zero bytes represents a valid
41//! instance of a type
42//! - [`FromBytes`] indicates that a type may safely be converted from an
43//! arbitrary byte sequence
44//! - [`IntoBytes`] indicates that a type may safely be converted *to* a byte
45//! sequence
46//!
47//! These traits support sized types, slices, and [slice DSTs][slice-dsts].
48//!
49//! [slice-dsts]: KnownLayout#dynamically-sized-types
50//!
51//! ##### Marker Traits
52//!
53//! Zerocopy provides three derivable marker traits that do not provide any
54//! functionality themselves, but are required to call certain methods provided
55//! by the conversion traits:
56//! - [`KnownLayout`] indicates that zerocopy can reason about certain layout
57//! qualities of a type
58//! - [`Immutable`] indicates that a type is free from interior mutability,
59//! except by ownership or an exclusive (`&mut`) borrow
60//! - [`Unaligned`] indicates that a type's alignment requirement is 1
61//!
62//! You should generally derive these marker traits whenever possible.
63//!
64//! ##### Conversion Macros
65//!
66//! Zerocopy provides six macros for safe casting between types:
67//!
68//! - ([`try_`][try_transmute])[`transmute`] (conditionally) converts a value of
69//! one type to a value of another type of the same size
70//! - ([`try_`][try_transmute_mut])[`transmute_mut`] (conditionally) converts a
71//! mutable reference of one type to a mutable reference of another type of
72//! the same size
73//! - ([`try_`][try_transmute_ref])[`transmute_ref`] (conditionally) converts a
74//! mutable or immutable reference of one type to an immutable reference of
75//! another type of the same size
76//!
77//! These macros perform *compile-time* size and alignment checks, meaning that
78//! unconditional casts have zero cost at runtime. Conditional casts do not need
79//! to validate size or alignment runtime, but do need to validate contents.
80//!
81//! These macros cannot be used in generic contexts. For generic conversions,
82//! use the methods defined by the [conversion traits](#conversion-traits).
83//!
84//! ##### Byteorder-Aware Numerics
85//!
86//! Zerocopy provides byte-order aware integer types that support these
87//! conversions; see the [`byteorder`] module. These types are especially useful
88//! for network parsing.
89//!
90//! # Cargo Features
91//!
92//! - **`alloc`**
93//! By default, `zerocopy` is `no_std`. When the `alloc` feature is enabled,
94//! the `alloc` crate is added as a dependency, and some allocation-related
95//! functionality is added.
96//!
97//! - **`std`**
98//! By default, `zerocopy` is `no_std`. When the `std` feature is enabled, the
99//! `std` crate is added as a dependency (ie, `no_std` is disabled), and
100//! support for some `std` types is added. `std` implies `alloc`.
101//!
102//! - **`derive`**
103//! Provides derives for the core marker traits via the `zerocopy-derive`
104//! crate. These derives are re-exported from `zerocopy`, so it is not
105//! necessary to depend on `zerocopy-derive` directly.
106//!
107//! However, you may experience better compile times if you instead directly
108//! depend on both `zerocopy` and `zerocopy-derive` in your `Cargo.toml`,
109//! since doing so will allow Rust to compile these crates in parallel. To do
110//! so, do *not* enable the `derive` feature, and list both dependencies in
111//! your `Cargo.toml` with the same leading non-zero version number; e.g:
112//!
113//! ```toml
114//! [dependencies]
115//! zerocopy = "0.X"
116//! zerocopy-derive = "0.X"
117//! ```
118//!
119//! To avoid the risk of [duplicate import errors][duplicate-import-errors] if
120//! one of your dependencies enables zerocopy's `derive` feature, import
121//! derives as `use zerocopy_derive::*` rather than by name (e.g., `use
122//! zerocopy_derive::FromBytes`).
123//!
124//! - **`simd`**
125//! When the `simd` feature is enabled, `FromZeros`, `FromBytes`, and
126//! `IntoBytes` impls are emitted for all stable SIMD types which exist on the
127//! target platform. Note that the layout of SIMD types is not yet stabilized,
128//! so these impls may be removed in the future if layout changes make them
129//! invalid. For more information, see the Unsafe Code Guidelines Reference
130//! page on the [layout of packed SIMD vectors][simd-layout].
131//!
132//! - **`simd-nightly`**
133//! Enables the `simd` feature and adds support for SIMD types which are only
134//! available on nightly. Since these types are unstable, support for any type
135//! may be removed at any point in the future.
136//!
137//! - **`float-nightly`**
138//! Adds support for the unstable `f16` and `f128` types. These types are
139//! not yet fully implemented and may not be supported on all platforms.
140//!
141//! [duplicate-import-errors]: https://github.com/google/zerocopy/issues/1587
142//! [simd-layout]: https://rust-lang.github.io/unsafe-code-guidelines/layout/packed-simd-vectors.html
143//!
144//! # Security Ethos
145//!
146//! Zerocopy is expressly designed for use in security-critical contexts. We
147//! strive to ensure that that zerocopy code is sound under Rust's current
148//! memory model, and *any future memory model*. We ensure this by:
149//! - **...not 'guessing' about Rust's semantics.**
150//! We annotate `unsafe` code with a precise rationale for its soundness that
151//! cites a relevant section of Rust's official documentation. When Rust's
152//! documented semantics are unclear, we work with the Rust Operational
153//! Semantics Team to clarify Rust's documentation.
154//! - **...rigorously testing our implementation.**
155//! We run tests using [Miri], ensuring that zerocopy is sound across a wide
156//! array of supported target platforms of varying endianness and pointer
157//! width, and across both current and experimental memory models of Rust.
158//! - **...formally proving the correctness of our implementation.**
159//! We apply formal verification tools like [Kani][kani] to prove zerocopy's
160//! correctness.
161//!
162//! For more information, see our full [soundness policy].
163//!
164//! [Miri]: https://github.com/rust-lang/miri
165//! [Kani]: https://github.com/model-checking/kani
166//! [soundness policy]: https://github.com/google/zerocopy/blob/main/POLICIES.md#soundness
167//!
168//! # Relationship to Project Safe Transmute
169//!
170//! [Project Safe Transmute] is an official initiative of the Rust Project to
171//! develop language-level support for safer transmutation. The Project consults
172//! with crates like zerocopy to identify aspects of safer transmutation that
173//! would benefit from compiler support, and has developed an [experimental,
174//! compiler-supported analysis][mcp-transmutability] which determines whether,
175//! for a given type, any value of that type may be soundly transmuted into
176//! another type. Once this functionality is sufficiently mature, zerocopy
177//! intends to replace its internal transmutability analysis (implemented by our
178//! custom derives) with the compiler-supported one. This change will likely be
179//! an implementation detail that is invisible to zerocopy's users.
180//!
181//! Project Safe Transmute will not replace the need for most of zerocopy's
182//! higher-level abstractions. The experimental compiler analysis is a tool for
183//! checking the soundness of `unsafe` code, not a tool to avoid writing
184//! `unsafe` code altogether. For the foreseeable future, crates like zerocopy
185//! will still be required in order to provide higher-level abstractions on top
186//! of the building block provided by Project Safe Transmute.
187//!
188//! [Project Safe Transmute]: https://rust-lang.github.io/rfcs/2835-project-safe-transmute.html
189//! [mcp-transmutability]: https://github.com/rust-lang/compiler-team/issues/411
190//!
191//! # MSRV
192//!
193//! See our [MSRV policy].
194//!
195//! [MSRV policy]: https://github.com/google/zerocopy/blob/main/POLICIES.md#msrv
196//!
197//! # Changelog
198//!
199//! Zerocopy uses [GitHub Releases].
200//!
201//! [GitHub Releases]: https://github.com/google/zerocopy/releases
202//!
203//! # Thanks
204//!
205//! Zerocopy is maintained by engineers at Google with help from [many wonderful
206//! contributors][contributors]. Thank you to everyone who has lent a hand in
207//! making Rust a little more secure!
208//!
209//! [contributors]: https://github.com/google/zerocopy/graphs/contributors
210
211// Sometimes we want to use lints which were added after our MSRV.
212// `unknown_lints` is `warn` by default and we deny warnings in CI, so without
213// this attribute, any unknown lint would cause a CI failure when testing with
214// our MSRV.
215#![allow(unknown_lints, non_local_definitions, unreachable_patterns)]
216#![deny(renamed_and_removed_lints)]
217#![deny(
218 anonymous_parameters,
219 deprecated_in_future,
220 late_bound_lifetime_arguments,
221 missing_copy_implementations,
222 missing_debug_implementations,
223 missing_docs,
224 path_statements,
225 patterns_in_fns_without_body,
226 rust_2018_idioms,
227 trivial_numeric_casts,
228 unreachable_pub,
229 unsafe_op_in_unsafe_fn,
230 unused_extern_crates,
231 // We intentionally choose not to deny `unused_qualifications`. When items
232 // are added to the prelude (e.g., `core::mem::size_of`), this has the
233 // consequence of making some uses trigger this lint on the latest toolchain
234 // (e.g., `mem::size_of`), but fixing it (e.g. by replacing with `size_of`)
235 // does not work on older toolchains.
236 //
237 // We tested a more complicated fix in #1413, but ultimately decided that,
238 // since this lint is just a minor style lint, the complexity isn't worth it
239 // - it's fine to occasionally have unused qualifications slip through,
240 // especially since these do not affect our user-facing API in any way.
241 variant_size_differences
242)]
243#![cfg_attr(
244 __ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS,
245 deny(fuzzy_provenance_casts, lossy_provenance_casts)
246)]
247#![deny(
248 clippy::all,
249 clippy::alloc_instead_of_core,
250 clippy::arithmetic_side_effects,
251 clippy::as_underscore,
252 clippy::assertions_on_result_states,
253 clippy::as_conversions,
254 clippy::correctness,
255 clippy::dbg_macro,
256 clippy::decimal_literal_representation,
257 clippy::double_must_use,
258 clippy::get_unwrap,
259 clippy::indexing_slicing,
260 clippy::missing_inline_in_public_items,
261 clippy::missing_safety_doc,
262 clippy::multiple_unsafe_ops_per_block,
263 clippy::must_use_candidate,
264 clippy::must_use_unit,
265 clippy::obfuscated_if_else,
266 clippy::perf,
267 clippy::print_stdout,
268 clippy::return_self_not_must_use,
269 clippy::std_instead_of_core,
270 clippy::style,
271 clippy::suspicious,
272 clippy::todo,
273 clippy::undocumented_unsafe_blocks,
274 clippy::unimplemented,
275 clippy::unnested_or_patterns,
276 clippy::unwrap_used,
277 clippy::use_debug
278)]
279// `clippy::incompatible_msrv` (implied by `clippy::suspicious`): This sometimes
280// has false positives, and we test on our MSRV in CI, so it doesn't help us
281// anyway.
282#![allow(clippy::needless_lifetimes, clippy::type_complexity, clippy::incompatible_msrv)]
283#![deny(
284 rustdoc::bare_urls,
285 rustdoc::broken_intra_doc_links,
286 rustdoc::invalid_codeblock_attributes,
287 rustdoc::invalid_html_tags,
288 rustdoc::invalid_rust_codeblocks,
289 rustdoc::missing_crate_level_docs,
290 rustdoc::private_intra_doc_links
291)]
292// In test code, it makes sense to weight more heavily towards concise, readable
293// code over correct or debuggable code.
294#![cfg_attr(any(test, kani), allow(
295 // In tests, you get line numbers and have access to source code, so panic
296 // messages are less important. You also often unwrap a lot, which would
297 // make expect'ing instead very verbose.
298 clippy::unwrap_used,
299 // In tests, there's no harm to "panic risks" - the worst that can happen is
300 // that your test will fail, and you'll fix it. By contrast, panic risks in
301 // production code introduce the possibly of code panicking unexpectedly "in
302 // the field".
303 clippy::arithmetic_side_effects,
304 clippy::indexing_slicing,
305))]
306#![cfg_attr(not(any(test, kani, feature = "std")), no_std)]
307#![cfg_attr(
308 all(feature = "simd-nightly", target_arch = "arm"),
309 feature(stdarch_arm_neon_intrinsics)
310)]
311#![cfg_attr(
312 all(feature = "simd-nightly", any(target_arch = "powerpc", target_arch = "powerpc64")),
313 feature(stdarch_powerpc)
314)]
315#![cfg_attr(feature = "float-nightly", feature(f16, f128))]
316#![cfg_attr(doc_cfg, feature(doc_cfg))]
317#![cfg_attr(__ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS, feature(coverage_attribute))]
318#![cfg_attr(
319 any(__ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS, miri),
320 feature(layout_for_ptr)
321)]
322#![cfg_attr(all(test, __ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS), feature(test))]
323
324// This is a hack to allow zerocopy-derive derives to work in this crate. They
325// assume that zerocopy is linked as an extern crate, so they access items from
326// it as `zerocopy::Xxx`. This makes that still work.
327#[cfg(any(feature = "derive", test))]
328extern crate self as zerocopy;
329
330#[cfg(all(test, __ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS))]
331extern crate test;
332
333#[doc(hidden)]
334#[macro_use]
335pub mod util;
336
337pub mod byte_slice;
338pub mod byteorder;
339mod deprecated;
340
341#[doc(hidden)]
342pub mod doctests;
343
344// This module is `pub` so that zerocopy's error types and error handling
345// documentation is grouped together in a cohesive module. In practice, we
346// expect most users to use the re-export of `error`'s items to avoid identifier
347// stuttering.
348pub mod error;
349mod impls;
350#[doc(hidden)]
351pub mod layout;
352mod macros;
353#[doc(hidden)]
354pub mod pointer;
355mod r#ref;
356mod split_at;
357// FIXME(#252): If we make this pub, come up with a better name.
358mod wrappers;
359
360use core::{
361 cell::{Cell, UnsafeCell},
362 cmp::Ordering,
363 fmt::{self, Debug, Display, Formatter},
364 hash::Hasher,
365 marker::PhantomData,
366 mem::{self, ManuallyDrop, MaybeUninit as CoreMaybeUninit},
367 num::{
368 NonZeroI128, NonZeroI16, NonZeroI32, NonZeroI64, NonZeroI8, NonZeroIsize, NonZeroU128,
369 NonZeroU16, NonZeroU32, NonZeroU64, NonZeroU8, NonZeroUsize, Wrapping,
370 },
371 ops::{Deref, DerefMut},
372 ptr::{self, NonNull},
373 slice,
374};
375#[cfg(feature = "std")]
376use std::io;
377
378use crate::pointer::invariant::{self, BecauseExclusive};
379#[doc(hidden)]
380pub use crate::pointer::PtrInner;
381pub use crate::{
382 byte_slice::*,
383 byteorder::*,
384 error::*,
385 r#ref::*,
386 split_at::{Split, SplitAt},
387 wrappers::*,
388};
389
390#[cfg(any(feature = "alloc", test, kani))]
391extern crate alloc;
392#[cfg(any(feature = "alloc", test))]
393use alloc::{boxed::Box, vec::Vec};
394#[cfg(any(feature = "alloc", test))]
395use core::alloc::Layout;
396
397use util::MetadataOf;
398
399// Used by `KnownLayout`.
400#[doc(hidden)]
401pub use crate::layout::*;
402// Used by `TryFromBytes::is_bit_valid`.
403#[doc(hidden)]
404pub use crate::pointer::{invariant::BecauseImmutable, Maybe, Ptr};
405// For each trait polyfill, as soon as the corresponding feature is stable, the
406// polyfill import will be unused because method/function resolution will prefer
407// the inherent method/function over a trait method/function. Thus, we suppress
408// the `unused_imports` warning.
409//
410// See the documentation on `util::polyfills` for more information.
411#[allow(unused_imports)]
412use crate::util::polyfills::{self, NonNullExt as _, NumExt as _};
413
414#[rustversion::nightly]
415#[cfg(all(test, not(__ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS)))]
416const _: () = {
417 #[deprecated = "some tests may be skipped due to missing RUSTFLAGS=\"--cfg __ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS\""]
418 const _WARNING: () = ();
419 #[warn(deprecated)]
420 _WARNING
421};
422
423// These exist so that code which was written against the old names will get
424// less confusing error messages when they upgrade to a more recent version of
425// zerocopy. On our MSRV toolchain, the error messages read, for example:
426//
427// error[E0603]: trait `FromZeroes` is private
428// --> examples/deprecated.rs:1:15
429// |
430// 1 | use zerocopy::FromZeroes;
431// | ^^^^^^^^^^ private trait
432// |
433// note: the trait `FromZeroes` is defined here
434// --> /Users/josh/workspace/zerocopy/src/lib.rs:1845:5
435// |
436// 1845 | use FromZeros as FromZeroes;
437// | ^^^^^^^^^^^^^^^^^^^^^^^
438//
439// The "note" provides enough context to make it easy to figure out how to fix
440// the error.
441/// Implements [`KnownLayout`].
442///
443/// This derive analyzes various aspects of a type's layout that are needed for
444/// some of zerocopy's APIs. It can be applied to structs, enums, and unions;
445/// e.g.:
446///
447/// ```
448/// # use zerocopy_derive::KnownLayout;
449/// #[derive(KnownLayout)]
450/// struct MyStruct {
451/// # /*
452/// ...
453/// # */
454/// }
455///
456/// #[derive(KnownLayout)]
457/// enum MyEnum {
458/// # V00,
459/// # /*
460/// ...
461/// # */
462/// }
463///
464/// #[derive(KnownLayout)]
465/// union MyUnion {
466/// # variant: u8,
467/// # /*
468/// ...
469/// # */
470/// }
471/// ```
472///
473/// # Limitations
474///
475/// This derive cannot currently be applied to unsized structs without an
476/// explicit `repr` attribute.
477///
478/// Some invocations of this derive run afoul of a [known bug] in Rust's type
479/// privacy checker. For example, this code:
480///
481/// ```compile_fail,E0446
482/// use zerocopy::*;
483/// # use zerocopy_derive::*;
484///
485/// #[derive(KnownLayout)]
486/// #[repr(C)]
487/// pub struct PublicType {
488/// leading: Foo,
489/// trailing: Bar,
490/// }
491///
492/// #[derive(KnownLayout)]
493/// struct Foo;
494///
495/// #[derive(KnownLayout)]
496/// struct Bar;
497/// ```
498///
499/// ...results in a compilation error:
500///
501/// ```text
502/// error[E0446]: private type `Bar` in public interface
503/// --> examples/bug.rs:3:10
504/// |
505/// 3 | #[derive(KnownLayout)]
506/// | ^^^^^^^^^^^ can't leak private type
507/// ...
508/// 14 | struct Bar;
509/// | ---------- `Bar` declared as private
510/// |
511/// = note: this error originates in the derive macro `KnownLayout` (in Nightly builds, run with -Z macro-backtrace for more info)
512/// ```
513///
514/// This issue arises when `#[derive(KnownLayout)]` is applied to `repr(C)`
515/// structs whose trailing field type is less public than the enclosing struct.
516///
517/// To work around this, mark the trailing field type `pub` and annotate it with
518/// `#[doc(hidden)]`; e.g.:
519///
520/// ```no_run
521/// use zerocopy::*;
522/// # use zerocopy_derive::*;
523///
524/// #[derive(KnownLayout)]
525/// #[repr(C)]
526/// pub struct PublicType {
527/// leading: Foo,
528/// trailing: Bar,
529/// }
530///
531/// #[derive(KnownLayout)]
532/// struct Foo;
533///
534/// #[doc(hidden)]
535/// #[derive(KnownLayout)]
536/// pub struct Bar; // <- `Bar` is now also `pub`
537/// ```
538///
539/// [known bug]: https://github.com/rust-lang/rust/issues/45713
540#[cfg(any(feature = "derive", test))]
541#[cfg_attr(doc_cfg, doc(cfg(feature = "derive")))]
542pub use zerocopy_derive::KnownLayout;
543#[allow(unused)]
544use {FromZeros as FromZeroes, IntoBytes as AsBytes, Ref as LayoutVerified};
545
546/// Indicates that zerocopy can reason about certain aspects of a type's layout.
547///
548/// This trait is required by many of zerocopy's APIs. It supports sized types,
549/// slices, and [slice DSTs](#dynamically-sized-types).
550///
551/// # Implementation
552///
553/// **Do not implement this trait yourself!** Instead, use
554/// [`#[derive(KnownLayout)]`][derive]; e.g.:
555///
556/// ```
557/// # use zerocopy_derive::KnownLayout;
558/// #[derive(KnownLayout)]
559/// struct MyStruct {
560/// # /*
561/// ...
562/// # */
563/// }
564///
565/// #[derive(KnownLayout)]
566/// enum MyEnum {
567/// # /*
568/// ...
569/// # */
570/// }
571///
572/// #[derive(KnownLayout)]
573/// union MyUnion {
574/// # variant: u8,
575/// # /*
576/// ...
577/// # */
578/// }
579/// ```
580///
581/// This derive performs a sophisticated analysis to deduce the layout
582/// characteristics of types. You **must** implement this trait via the derive.
583///
584/// # Dynamically-sized types
585///
586/// `KnownLayout` supports slice-based dynamically sized types ("slice DSTs").
587///
588/// A slice DST is a type whose trailing field is either a slice or another
589/// slice DST, rather than a type with fixed size. For example:
590///
591/// ```
592/// #[repr(C)]
593/// struct PacketHeader {
594/// # /*
595/// ...
596/// # */
597/// }
598///
599/// #[repr(C)]
600/// struct Packet {
601/// header: PacketHeader,
602/// body: [u8],
603/// }
604/// ```
605///
606/// It can be useful to think of slice DSTs as a generalization of slices - in
607/// other words, a normal slice is just the special case of a slice DST with
608/// zero leading fields. In particular:
609/// - Like slices, slice DSTs can have different lengths at runtime
610/// - Like slices, slice DSTs cannot be passed by-value, but only by reference
611/// or via other indirection such as `Box`
612/// - Like slices, a reference (or `Box`, or other pointer type) to a slice DST
613/// encodes the number of elements in the trailing slice field
614///
615/// ## Slice DST layout
616///
617/// Just like other composite Rust types, the layout of a slice DST is not
618/// well-defined unless it is specified using an explicit `#[repr(...)]`
619/// attribute such as `#[repr(C)]`. [Other representations are
620/// supported][reprs], but in this section, we'll use `#[repr(C)]` as our
621/// example.
622///
623/// A `#[repr(C)]` slice DST is laid out [just like sized `#[repr(C)]`
624/// types][repr-c-structs], but the presence of a variable-length field
625/// introduces the possibility of *dynamic padding*. In particular, it may be
626/// necessary to add trailing padding *after* the trailing slice field in order
627/// to satisfy the outer type's alignment, and the amount of padding required
628/// may be a function of the length of the trailing slice field. This is just a
629/// natural consequence of the normal `#[repr(C)]` rules applied to slice DSTs,
630/// but it can result in surprising behavior. For example, consider the
631/// following type:
632///
633/// ```
634/// #[repr(C)]
635/// struct Foo {
636/// a: u32,
637/// b: u8,
638/// z: [u16],
639/// }
640/// ```
641///
642/// Assuming that `u32` has alignment 4 (this is not true on all platforms),
643/// then `Foo` has alignment 4 as well. Here is the smallest possible value for
644/// `Foo`:
645///
646/// ```text
647/// byte offset | 01234567
648/// field | aaaab---
649/// ><
650/// ```
651///
652/// In this value, `z` has length 0. Abiding by `#[repr(C)]`, the lowest offset
653/// that we can place `z` at is 5, but since `z` has alignment 2, we need to
654/// round up to offset 6. This means that there is one byte of padding between
655/// `b` and `z`, then 0 bytes of `z` itself (denoted `><` in this diagram), and
656/// then two bytes of padding after `z` in order to satisfy the overall
657/// alignment of `Foo`. The size of this instance is 8 bytes.
658///
659/// What about if `z` has length 1?
660///
661/// ```text
662/// byte offset | 01234567
663/// field | aaaab-zz
664/// ```
665///
666/// In this instance, `z` has length 1, and thus takes up 2 bytes. That means
667/// that we no longer need padding after `z` in order to satisfy `Foo`'s
668/// alignment. We've now seen two different values of `Foo` with two different
669/// lengths of `z`, but they both have the same size - 8 bytes.
670///
671/// What about if `z` has length 2?
672///
673/// ```text
674/// byte offset | 012345678901
675/// field | aaaab-zzzz--
676/// ```
677///
678/// Now `z` has length 2, and thus takes up 4 bytes. This brings our un-padded
679/// size to 10, and so we now need another 2 bytes of padding after `z` to
680/// satisfy `Foo`'s alignment.
681///
682/// Again, all of this is just a logical consequence of the `#[repr(C)]` rules
683/// applied to slice DSTs, but it can be surprising that the amount of trailing
684/// padding becomes a function of the trailing slice field's length, and thus
685/// can only be computed at runtime.
686///
687/// [reprs]: https://doc.rust-lang.org/reference/type-layout.html#representations
688/// [repr-c-structs]: https://doc.rust-lang.org/reference/type-layout.html#reprc-structs
689///
690/// ## What is a valid size?
691///
692/// There are two places in zerocopy's API that we refer to "a valid size" of a
693/// type. In normal casts or conversions, where the source is a byte slice, we
694/// need to know whether the source byte slice is a valid size of the
695/// destination type. In prefix or suffix casts, we need to know whether *there
696/// exists* a valid size of the destination type which fits in the source byte
697/// slice and, if so, what the largest such size is.
698///
699/// As outlined above, a slice DST's size is defined by the number of elements
700/// in its trailing slice field. However, there is not necessarily a 1-to-1
701/// mapping between trailing slice field length and overall size. As we saw in
702/// the previous section with the type `Foo`, instances with both 0 and 1
703/// elements in the trailing `z` field result in a `Foo` whose size is 8 bytes.
704///
705/// When we say "x is a valid size of `T`", we mean one of two things:
706/// - If `T: Sized`, then we mean that `x == size_of::<T>()`
707/// - If `T` is a slice DST, then we mean that there exists a `len` such that the instance of
708/// `T` with `len` trailing slice elements has size `x`
709///
710/// When we say "largest possible size of `T` that fits in a byte slice", we
711/// mean one of two things:
712/// - If `T: Sized`, then we mean `size_of::<T>()` if the byte slice is at least
713/// `size_of::<T>()` bytes long
714/// - If `T` is a slice DST, then we mean to consider all values, `len`, such
715/// that the instance of `T` with `len` trailing slice elements fits in the
716/// byte slice, and to choose the largest such `len`, if any
717///
718///
719/// # Safety
720///
721/// This trait does not convey any safety guarantees to code outside this crate.
722///
723/// You must not rely on the `#[doc(hidden)]` internals of `KnownLayout`. Future
724/// releases of zerocopy may make backwards-breaking changes to these items,
725/// including changes that only affect soundness, which may cause code which
726/// uses those items to silently become unsound.
727///
728#[cfg_attr(feature = "derive", doc = "[derive]: zerocopy_derive::KnownLayout")]
729#[cfg_attr(
730 not(feature = "derive"),
731 doc = concat!("[derive]: https://docs.rs/zerocopy/", env!("CARGO_PKG_VERSION"), "/zerocopy/derive.KnownLayout.html"),
732)]
733#[cfg_attr(
734 not(no_zerocopy_diagnostic_on_unimplemented_1_78_0),
735 diagnostic::on_unimplemented(note = "Consider adding `#[derive(KnownLayout)]` to `{Self}`")
736)]
737pub unsafe trait KnownLayout {
738 // The `Self: Sized` bound makes it so that `KnownLayout` can still be
739 // object safe. It's not currently object safe thanks to `const LAYOUT`, and
740 // it likely won't be in the future, but there's no reason not to be
741 // forwards-compatible with object safety.
742 #[doc(hidden)]
743 fn only_derive_is_allowed_to_implement_this_trait()
744 where
745 Self: Sized;
746
747 /// The type of metadata stored in a pointer to `Self`.
748 ///
749 /// This is `()` for sized types and `usize` for slice DSTs.
750 type PointerMetadata: PointerMetadata;
751
752 /// A maybe-uninitialized analog of `Self`
753 ///
754 /// # Safety
755 ///
756 /// `Self::LAYOUT` and `Self::MaybeUninit::LAYOUT` are identical.
757 /// `Self::MaybeUninit` admits uninitialized bytes in all positions.
758 #[doc(hidden)]
759 type MaybeUninit: ?Sized + KnownLayout<PointerMetadata = Self::PointerMetadata>;
760
761 /// The layout of `Self`.
762 ///
763 /// # Safety
764 ///
765 /// Callers may assume that `LAYOUT` accurately reflects the layout of
766 /// `Self`. In particular:
767 /// - `LAYOUT.align` is equal to `Self`'s alignment
768 /// - If `Self: Sized`, then `LAYOUT.size_info == SizeInfo::Sized { size }`
769 /// where `size == size_of::<Self>()`
770 /// - If `Self` is a slice DST, then `LAYOUT.size_info ==
771 /// SizeInfo::SliceDst(slice_layout)` where:
772 /// - The size, `size`, of an instance of `Self` with `elems` trailing
773 /// slice elements is equal to `slice_layout.offset +
774 /// slice_layout.elem_size * elems` rounded up to the nearest multiple
775 /// of `LAYOUT.align`
776 /// - For such an instance, any bytes in the range `[slice_layout.offset +
777 /// slice_layout.elem_size * elems, size)` are padding and must not be
778 /// assumed to be initialized
779 #[doc(hidden)]
780 const LAYOUT: DstLayout;
781
782 /// SAFETY: The returned pointer has the same address and provenance as
783 /// `bytes`. If `Self` is a DST, the returned pointer's referent has `elems`
784 /// elements in its trailing slice.
785 #[doc(hidden)]
786 fn raw_from_ptr_len(bytes: NonNull<u8>, meta: Self::PointerMetadata) -> NonNull<Self>;
787
788 /// Extracts the metadata from a pointer to `Self`.
789 ///
790 /// # Safety
791 ///
792 /// `pointer_to_metadata` always returns the correct metadata stored in
793 /// `ptr`.
794 #[doc(hidden)]
795 fn pointer_to_metadata(ptr: *mut Self) -> Self::PointerMetadata;
796
797 /// Computes the length of the byte range addressed by `ptr`.
798 ///
799 /// Returns `None` if the resulting length would not fit in an `usize`.
800 ///
801 /// # Safety
802 ///
803 /// Callers may assume that `size_of_val_raw` always returns the correct
804 /// size.
805 ///
806 /// Callers may assume that, if `ptr` addresses a byte range whose length
807 /// fits in an `usize`, this will return `Some`.
808 #[doc(hidden)]
809 #[must_use]
810 #[inline(always)]
811 fn size_of_val_raw(ptr: NonNull<Self>) -> Option<usize> {
812 let meta = Self::pointer_to_metadata(ptr.as_ptr());
813 // SAFETY: `size_for_metadata` promises to only return `None` if the
814 // resulting size would not fit in a `usize`.
815 Self::size_for_metadata(meta)
816 }
817
818 #[doc(hidden)]
819 #[must_use]
820 #[inline(always)]
821 fn raw_dangling() -> NonNull<Self> {
822 let meta = Self::PointerMetadata::from_elem_count(0);
823 Self::raw_from_ptr_len(NonNull::dangling(), meta)
824 }
825
826 /// Computes the size of an object of type `Self` with the given pointer
827 /// metadata.
828 ///
829 /// # Safety
830 ///
831 /// `size_for_metadata` promises to return `None` if and only if the
832 /// resulting size would not fit in a `usize`. Note that the returned size
833 /// could exceed the actual maximum valid size of an allocated object,
834 /// `isize::MAX`.
835 ///
836 /// # Examples
837 ///
838 /// ```
839 /// use zerocopy::KnownLayout;
840 ///
841 /// assert_eq!(u8::size_for_metadata(()), Some(1));
842 /// assert_eq!(u16::size_for_metadata(()), Some(2));
843 /// assert_eq!(<[u8]>::size_for_metadata(42), Some(42));
844 /// assert_eq!(<[u16]>::size_for_metadata(42), Some(84));
845 ///
846 /// // This size exceeds the maximum valid object size (`isize::MAX`):
847 /// assert_eq!(<[u8]>::size_for_metadata(usize::MAX), Some(usize::MAX));
848 ///
849 /// // This size, if computed, would exceed `usize::MAX`:
850 /// assert_eq!(<[u16]>::size_for_metadata(usize::MAX), None);
851 /// ```
852 #[inline(always)]
853 fn size_for_metadata(meta: Self::PointerMetadata) -> Option<usize> {
854 meta.size_for_metadata(Self::LAYOUT)
855 }
856}
857
858/// Efficiently produces the [`TrailingSliceLayout`] of `T`.
859#[inline(always)]
860pub(crate) fn trailing_slice_layout<T>() -> TrailingSliceLayout
861where
862 T: ?Sized + KnownLayout<PointerMetadata = usize>,
863{
864 trait LayoutFacts {
865 const SIZE_INFO: TrailingSliceLayout;
866 }
867
868 impl<T: ?Sized> LayoutFacts for T
869 where
870 T: KnownLayout<PointerMetadata = usize>,
871 {
872 const SIZE_INFO: TrailingSliceLayout = match T::LAYOUT.size_info {
873 crate::SizeInfo::Sized { .. } => const_panic!("unreachable"),
874 crate::SizeInfo::SliceDst(info) => info,
875 };
876 }
877
878 T::SIZE_INFO
879}
880
881/// The metadata associated with a [`KnownLayout`] type.
882#[doc(hidden)]
883pub trait PointerMetadata: Copy + Eq + Debug {
884 /// Constructs a `Self` from an element count.
885 ///
886 /// If `Self = ()`, this returns `()`. If `Self = usize`, this returns
887 /// `elems`. No other types are currently supported.
888 fn from_elem_count(elems: usize) -> Self;
889
890 /// Computes the size of the object with the given layout and pointer
891 /// metadata.
892 ///
893 /// # Panics
894 ///
895 /// If `Self = ()`, `layout` must describe a sized type. If `Self = usize`,
896 /// `layout` must describe a slice DST. Otherwise, `size_for_metadata` may
897 /// panic.
898 ///
899 /// # Safety
900 ///
901 /// `size_for_metadata` promises to only return `None` if the resulting size
902 /// would not fit in a `usize`.
903 fn size_for_metadata(self, layout: DstLayout) -> Option<usize>;
904}
905
906impl PointerMetadata for () {
907 #[inline]
908 #[allow(clippy::unused_unit)]
909 fn from_elem_count(_elems: usize) -> () {}
910
911 #[inline]
912 fn size_for_metadata(self, layout: DstLayout) -> Option<usize> {
913 match layout.size_info {
914 SizeInfo::Sized { size } => Some(size),
915 // NOTE: This branch is unreachable, but we return `None` rather
916 // than `unreachable!()` to avoid generating panic paths.
917 SizeInfo::SliceDst(_) => None,
918 }
919 }
920}
921
922impl PointerMetadata for usize {
923 #[inline]
924 fn from_elem_count(elems: usize) -> usize {
925 elems
926 }
927
928 #[inline]
929 fn size_for_metadata(self, layout: DstLayout) -> Option<usize> {
930 match layout.size_info {
931 SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size }) => {
932 let slice_len = elem_size.checked_mul(self)?;
933 let without_padding = offset.checked_add(slice_len)?;
934 without_padding.checked_add(util::padding_needed_for(without_padding, layout.align))
935 }
936 // NOTE: This branch is unreachable, but we return `None` rather
937 // than `unreachable!()` to avoid generating panic paths.
938 SizeInfo::Sized { .. } => None,
939 }
940 }
941}
942
943// SAFETY: Delegates safety to `DstLayout::for_slice`.
944unsafe impl<T> KnownLayout for [T] {
945 #[allow(clippy::missing_inline_in_public_items, dead_code)]
946 #[cfg_attr(
947 all(coverage_nightly, __ZEROCOPY_INTERNAL_USE_ONLY_NIGHTLY_FEATURES_IN_TESTS),
948 coverage(off)
949 )]
950 fn only_derive_is_allowed_to_implement_this_trait()
951 where
952 Self: Sized,
953 {
954 }
955
956 type PointerMetadata = usize;
957
958 // SAFETY: `CoreMaybeUninit<T>::LAYOUT` and `T::LAYOUT` are identical
959 // because `CoreMaybeUninit<T>` has the same size and alignment as `T` [1].
960 // Consequently, `[CoreMaybeUninit<T>]::LAYOUT` and `[T]::LAYOUT` are
961 // identical, because they both lack a fixed-sized prefix and because they
962 // inherit the alignments of their inner element type (which are identical)
963 // [2][3].
964 //
965 // `[CoreMaybeUninit<T>]` admits uninitialized bytes at all positions
966 // because `CoreMaybeUninit<T>` admits uninitialized bytes at all positions
967 // and because the inner elements of `[CoreMaybeUninit<T>]` are laid out
968 // back-to-back [2][3].
969 //
970 // [1] Per https://doc.rust-lang.org/1.81.0/std/mem/union.MaybeUninit.html#layout-1:
971 //
972 // `MaybeUninit<T>` is guaranteed to have the same size, alignment, and ABI as
973 // `T`
974 //
975 // [2] Per https://doc.rust-lang.org/1.82.0/reference/type-layout.html#slice-layout:
976 //
977 // Slices have the same layout as the section of the array they slice.
978 //
979 // [3] Per https://doc.rust-lang.org/1.82.0/reference/type-layout.html#array-layout:
980 //
981 // An array of `[T; N]` has a size of `size_of::<T>() * N` and the same
982 // alignment of `T`. Arrays are laid out so that the zero-based `nth`
983 // element of the array is offset from the start of the array by `n *
984 // size_of::<T>()` bytes.
985 type MaybeUninit = [CoreMaybeUninit<T>];
986
987 const LAYOUT: DstLayout = DstLayout::for_slice::<T>();
988
989 // SAFETY: `.cast` preserves address and provenance. The returned pointer
990 // refers to an object with `elems` elements by construction.
991 #[inline(always)]
992 fn raw_from_ptr_len(data: NonNull<u8>, elems: usize) -> NonNull<Self> {
993 // FIXME(#67): Remove this allow. See NonNullExt for more details.
994 #[allow(unstable_name_collisions)]
995 NonNull::slice_from_raw_parts(data.cast::<T>(), elems)
996 }
997
998 #[inline(always)]
999 fn pointer_to_metadata(ptr: *mut [T]) -> usize {
1000 #[allow(clippy::as_conversions)]
1001 let slc = ptr as *const [()];
1002
1003 // SAFETY:
1004 // - `()` has alignment 1, so `slc` is trivially aligned.
1005 // - `slc` was derived from a non-null pointer.
1006 // - The size is 0 regardless of the length, so it is sound to
1007 // materialize a reference regardless of location.
1008 // - By invariant, `self.ptr` has valid provenance.
1009 let slc = unsafe { &*slc };
1010
1011 // This is correct because the preceding `as` cast preserves the number
1012 // of slice elements. [1]
1013 //
1014 // [1] Per https://doc.rust-lang.org/reference/expressions/operator-expr.html#pointer-to-pointer-cast:
1015 //
1016 // For slice types like `[T]` and `[U]`, the raw pointer types `*const
1017 // [T]`, `*mut [T]`, `*const [U]`, and `*mut [U]` encode the number of
1018 // elements in this slice. Casts between these raw pointer types
1019 // preserve the number of elements. ... The same holds for `str` and
1020 // any compound type whose unsized tail is a slice type, such as
1021 // struct `Foo(i32, [u8])` or `(u64, Foo)`.
1022 slc.len()
1023 }
1024}
1025
1026#[rustfmt::skip]
1027impl_known_layout!(
1028 (),
1029 u8, i8, u16, i16, u32, i32, u64, i64, u128, i128, usize, isize, f32, f64,
1030 bool, char,
1031 NonZeroU8, NonZeroI8, NonZeroU16, NonZeroI16, NonZeroU32, NonZeroI32,
1032 NonZeroU64, NonZeroI64, NonZeroU128, NonZeroI128, NonZeroUsize, NonZeroIsize
1033);
1034#[rustfmt::skip]
1035#[cfg(feature = "float-nightly")]
1036impl_known_layout!(
1037 #[cfg_attr(doc_cfg, doc(cfg(feature = "float-nightly")))]
1038 f16,
1039 #[cfg_attr(doc_cfg, doc(cfg(feature = "float-nightly")))]
1040 f128
1041);
1042#[rustfmt::skip]
1043impl_known_layout!(
1044 T => Option<T>,
1045 T: ?Sized => PhantomData<T>,
1046 T => Wrapping<T>,
1047 T => CoreMaybeUninit<T>,
1048 T: ?Sized => *const T,
1049 T: ?Sized => *mut T,
1050 T: ?Sized => &'_ T,
1051 T: ?Sized => &'_ mut T,
1052);
1053impl_known_layout!(const N: usize, T => [T; N]);
1054
1055// SAFETY: `str` has the same representation as `[u8]`. `ManuallyDrop<T>` [1],
1056// `UnsafeCell<T>` [2], and `Cell<T>` [3] have the same representation as `T`.
1057//
1058// [1] Per https://doc.rust-lang.org/1.85.0/std/mem/struct.ManuallyDrop.html:
1059//
1060// `ManuallyDrop<T>` is guaranteed to have the same layout and bit validity as
1061// `T`
1062//
1063// [2] Per https://doc.rust-lang.org/1.85.0/core/cell/struct.UnsafeCell.html#memory-layout:
1064//
1065// `UnsafeCell<T>` has the same in-memory representation as its inner type
1066// `T`.
1067//
1068// [3] Per https://doc.rust-lang.org/1.85.0/core/cell/struct.Cell.html#memory-layout:
1069//
1070// `Cell<T>` has the same in-memory representation as `T`.
1071#[allow(clippy::multiple_unsafe_ops_per_block)]
1072const _: () = unsafe {
1073 unsafe_impl_known_layout!(
1074 #[repr([u8])]
1075 str
1076 );
1077 unsafe_impl_known_layout!(T: ?Sized + KnownLayout => #[repr(T)] ManuallyDrop<T>);
1078 unsafe_impl_known_layout!(T: ?Sized + KnownLayout => #[repr(T)] UnsafeCell<T>);
1079 unsafe_impl_known_layout!(T: ?Sized + KnownLayout => #[repr(T)] Cell<T>);
1080};
1081
1082// SAFETY:
1083// - By consequence of the invariant on `T::MaybeUninit` that `T::LAYOUT` and
1084// `T::MaybeUninit::LAYOUT` are equal, `T` and `T::MaybeUninit` have the same:
1085// - Fixed prefix size
1086// - Alignment
1087// - (For DSTs) trailing slice element size
1088// - By consequence of the above, referents `T::MaybeUninit` and `T` have the
1089// require the same kind of pointer metadata, and thus it is valid to perform
1090// an `as` cast from `*mut T` and `*mut T::MaybeUninit`, and this operation
1091// preserves referent size (ie, `size_of_val_raw`).
1092const _: () = unsafe {
1093 unsafe_impl_known_layout!(T: ?Sized + KnownLayout => #[repr(T::MaybeUninit)] MaybeUninit<T>)
1094};
1095
1096// FIXME(#196, #2856): Eventually, we'll want to support enums variants and
1097// union fields being treated uniformly since they behave similarly to each
1098// other in terms of projecting validity – specifically, for a type `T` with
1099// validity `V`, if `T` is a struct type, then its fields straightforwardly also
1100// have validity `V`. By contrast, if `T` is an enum or union type, then
1101// validity is not straightforwardly recursive in this way.
1102#[doc(hidden)]
1103pub const STRUCT_VARIANT_ID: i128 = -1;
1104#[doc(hidden)]
1105pub const UNION_VARIANT_ID: i128 = -2;
1106
1107/// Projects a given field from `Self`.
1108///
1109/// All implementations of `HasField` for a particular field `f` in `Self`
1110/// should use the same `Field` type; this ensures that `Field` is inferable
1111/// given an explicit `VARIANT_ID` and `FIELD_ID`.
1112///
1113/// # Safety
1114///
1115/// A field `f` is `HasField` for `Self` if and only if:
1116///
1117/// - If `Self` is a struct or union type, then `VARIANT_ID` is
1118/// `STRUCT_VARIANT_ID` or `UNION_VARIANT_ID` respectively; otherwise, if
1119/// `Self` is an enum type, `VARIANT_ID` is the numerical index of the enum
1120/// variant in which `f` appears.
1121/// - If `f` has name `n`, `FIELD_ID` is `zerocopy::ident_id!(n)`; otherwise,
1122/// if `f` is at index `i`, `FIELD_ID` is `zerocopy::ident_id!(i)`.
1123/// - `Field` is a type with the same visibility as `f`.
1124/// - `Type` has the same type as `f`.
1125///
1126/// The caller must **not** assume that a pointer's referent being aligned
1127/// implies that calling `project` on that pointer will result in a pointer to
1128/// an aligned referent. For example, `HasField` may be implemented for
1129/// `#[repr(packed)]` structs.
1130///
1131/// The implementation of `project` must satisfy its safety post-condition.
1132#[doc(hidden)]
1133pub unsafe trait HasField<Field, const VARIANT_ID: i128, const FIELD_ID: i128> {
1134 fn only_derive_is_allowed_to_implement_this_trait()
1135 where
1136 Self: Sized;
1137
1138 /// The type of the field.
1139 type Type: ?Sized;
1140
1141 /// Projects from `slf` to the field.
1142 ///
1143 /// # Safety
1144 ///
1145 /// The returned pointer refers to a non-strict subset of the bytes of
1146 /// `slf`'s referent, and has the same provenance as `slf`.
1147 fn project(slf: PtrInner<'_, Self>) -> *mut Self::Type;
1148}
1149
1150/// Analyzes whether a type is [`FromZeros`].
1151///
1152/// This derive analyzes, at compile time, whether the annotated type satisfies
1153/// the [safety conditions] of `FromZeros` and implements `FromZeros` and its
1154/// supertraits if it is sound to do so. This derive can be applied to structs,
1155/// enums, and unions; e.g.:
1156///
1157/// ```
1158/// # use zerocopy_derive::{FromZeros, Immutable};
1159/// #[derive(FromZeros)]
1160/// struct MyStruct {
1161/// # /*
1162/// ...
1163/// # */
1164/// }
1165///
1166/// #[derive(FromZeros)]
1167/// #[repr(u8)]
1168/// enum MyEnum {
1169/// # Variant0,
1170/// # /*
1171/// ...
1172/// # */
1173/// }
1174///
1175/// #[derive(FromZeros, Immutable)]
1176/// union MyUnion {
1177/// # variant: u8,
1178/// # /*
1179/// ...
1180/// # */
1181/// }
1182/// ```
1183///
1184/// [safety conditions]: trait@FromZeros#safety
1185///
1186/// # Analysis
1187///
1188/// *This section describes, roughly, the analysis performed by this derive to
1189/// determine whether it is sound to implement `FromZeros` for a given type.
1190/// Unless you are modifying the implementation of this derive, or attempting to
1191/// manually implement `FromZeros` for a type yourself, you don't need to read
1192/// this section.*
1193///
1194/// If a type has the following properties, then this derive can implement
1195/// `FromZeros` for that type:
1196///
1197/// - If the type is a struct, all of its fields must be `FromZeros`.
1198/// - If the type is an enum:
1199/// - It must have a defined representation (`repr`s `C`, `u8`, `u16`, `u32`,
1200/// `u64`, `usize`, `i8`, `i16`, `i32`, `i64`, or `isize`).
1201/// - It must have a variant with a discriminant/tag of `0`, and its fields
1202/// must be `FromZeros`. See [the reference] for a description of
1203/// discriminant values are specified.
1204/// - The fields of that variant must be `FromZeros`.
1205///
1206/// This analysis is subject to change. Unsafe code may *only* rely on the
1207/// documented [safety conditions] of `FromZeros`, and must *not* rely on the
1208/// implementation details of this derive.
1209///
1210/// [the reference]: https://doc.rust-lang.org/reference/items/enumerations.html#custom-discriminant-values-for-fieldless-enumerations
1211///
1212/// ## Why isn't an explicit representation required for structs?
1213///
1214/// Neither this derive, nor the [safety conditions] of `FromZeros`, requires
1215/// that structs are marked with `#[repr(C)]`.
1216///
1217/// Per the [Rust reference](reference),
1218///
1219/// > The representation of a type can change the padding between fields, but
1220/// > does not change the layout of the fields themselves.
1221///
1222/// [reference]: https://doc.rust-lang.org/reference/type-layout.html#representations
1223///
1224/// Since the layout of structs only consists of padding bytes and field bytes,
1225/// a struct is soundly `FromZeros` if:
1226/// 1. its padding is soundly `FromZeros`, and
1227/// 2. its fields are soundly `FromZeros`.
1228///
1229/// The answer to the first question is always yes: padding bytes do not have
1230/// any validity constraints. A [discussion] of this question in the Unsafe Code
1231/// Guidelines Working Group concluded that it would be virtually unimaginable
1232/// for future versions of rustc to add validity constraints to padding bytes.
1233///
1234/// [discussion]: https://github.com/rust-lang/unsafe-code-guidelines/issues/174
1235///
1236/// Whether a struct is soundly `FromZeros` therefore solely depends on whether
1237/// its fields are `FromZeros`.
1238// FIXME(#146): Document why we don't require an enum to have an explicit `repr`
1239// attribute.
1240#[cfg(any(feature = "derive", test))]
1241#[cfg_attr(doc_cfg, doc(cfg(feature = "derive")))]
1242pub use zerocopy_derive::FromZeros;
1243/// Analyzes whether a type is [`Immutable`].
1244///
1245/// This derive analyzes, at compile time, whether the annotated type satisfies
1246/// the [safety conditions] of `Immutable` and implements `Immutable` if it is
1247/// sound to do so. This derive can be applied to structs, enums, and unions;
1248/// e.g.:
1249///
1250/// ```
1251/// # use zerocopy_derive::Immutable;
1252/// #[derive(Immutable)]
1253/// struct MyStruct {
1254/// # /*
1255/// ...
1256/// # */
1257/// }
1258///
1259/// #[derive(Immutable)]
1260/// enum MyEnum {
1261/// # Variant0,
1262/// # /*
1263/// ...
1264/// # */
1265/// }
1266///
1267/// #[derive(Immutable)]
1268/// union MyUnion {
1269/// # variant: u8,
1270/// # /*
1271/// ...
1272/// # */
1273/// }
1274/// ```
1275///
1276/// # Analysis
1277///
1278/// *This section describes, roughly, the analysis performed by this derive to
1279/// determine whether it is sound to implement `Immutable` for a given type.
1280/// Unless you are modifying the implementation of this derive, you don't need
1281/// to read this section.*
1282///
1283/// If a type has the following properties, then this derive can implement
1284/// `Immutable` for that type:
1285///
1286/// - All fields must be `Immutable`.
1287///
1288/// This analysis is subject to change. Unsafe code may *only* rely on the
1289/// documented [safety conditions] of `Immutable`, and must *not* rely on the
1290/// implementation details of this derive.
1291///
1292/// [safety conditions]: trait@Immutable#safety
1293#[cfg(any(feature = "derive", test))]
1294#[cfg_attr(doc_cfg, doc(cfg(feature = "derive")))]
1295pub use zerocopy_derive::Immutable;
1296
1297/// Types which are free from interior mutability.
1298///
1299/// `T: Immutable` indicates that `T` does not permit interior mutation, except
1300/// by ownership or an exclusive (`&mut`) borrow.
1301///
1302/// # Implementation
1303///
1304/// **Do not implement this trait yourself!** Instead, use
1305/// [`#[derive(Immutable)]`][derive] (requires the `derive` Cargo feature);
1306/// e.g.:
1307///
1308/// ```
1309/// # use zerocopy_derive::Immutable;
1310/// #[derive(Immutable)]
1311/// struct MyStruct {
1312/// # /*
1313/// ...
1314/// # */
1315/// }
1316///
1317/// #[derive(Immutable)]
1318/// enum MyEnum {
1319/// # /*
1320/// ...
1321/// # */
1322/// }
1323///
1324/// #[derive(Immutable)]
1325/// union MyUnion {
1326/// # variant: u8,
1327/// # /*
1328/// ...
1329/// # */
1330/// }
1331/// ```
1332///
1333/// This derive performs a sophisticated, compile-time safety analysis to
1334/// determine whether a type is `Immutable`.
1335///
1336/// # Safety
1337///
1338/// Unsafe code outside of this crate must not make any assumptions about `T`
1339/// based on `T: Immutable`. We reserve the right to relax the requirements for
1340/// `Immutable` in the future, and if unsafe code outside of this crate makes
1341/// assumptions based on `T: Immutable`, future relaxations may cause that code
1342/// to become unsound.
1343///
1344// # Safety (Internal)
1345//
1346// If `T: Immutable`, unsafe code *inside of this crate* may assume that, given
1347// `t: &T`, `t` does not contain any [`UnsafeCell`]s at any byte location
1348// within the byte range addressed by `t`. This includes ranges of length 0
1349// (e.g., `UnsafeCell<()>` and `[UnsafeCell<u8>; 0]`). If a type implements
1350// `Immutable` which violates this assumptions, it may cause this crate to
1351// exhibit [undefined behavior].
1352//
1353// [`UnsafeCell`]: core::cell::UnsafeCell
1354// [undefined behavior]: https://raphlinus.github.io/programming/rust/2018/08/17/undefined-behavior.html
1355#[cfg_attr(
1356 feature = "derive",
1357 doc = "[derive]: zerocopy_derive::Immutable",
1358 doc = "[derive-analysis]: zerocopy_derive::Immutable#analysis"
1359)]
1360#[cfg_attr(
1361 not(feature = "derive"),
1362 doc = concat!("[derive]: https://docs.rs/zerocopy/", env!("CARGO_PKG_VERSION"), "/zerocopy/derive.Immutable.html"),
1363 doc = concat!("[derive-analysis]: https://docs.rs/zerocopy/", env!("CARGO_PKG_VERSION"), "/zerocopy/derive.Immutable.html#analysis"),
1364)]
1365#[cfg_attr(
1366 not(no_zerocopy_diagnostic_on_unimplemented_1_78_0),
1367 diagnostic::on_unimplemented(note = "Consider adding `#[derive(Immutable)]` to `{Self}`")
1368)]
1369pub unsafe trait Immutable {
1370 // The `Self: Sized` bound makes it so that `Immutable` is still object
1371 // safe.
1372 #[doc(hidden)]
1373 fn only_derive_is_allowed_to_implement_this_trait()
1374 where
1375 Self: Sized;
1376}
1377
1378/// Implements [`TryFromBytes`].
1379///
1380/// This derive synthesizes the runtime checks required to check whether a
1381/// sequence of initialized bytes corresponds to a valid instance of a type.
1382/// This derive can be applied to structs, enums, and unions; e.g.:
1383///
1384/// ```
1385/// # use zerocopy_derive::{TryFromBytes, Immutable};
1386/// #[derive(TryFromBytes)]
1387/// struct MyStruct {
1388/// # /*
1389/// ...
1390/// # */
1391/// }
1392///
1393/// #[derive(TryFromBytes)]
1394/// #[repr(u8)]
1395/// enum MyEnum {
1396/// # V00,
1397/// # /*
1398/// ...
1399/// # */
1400/// }
1401///
1402/// #[derive(TryFromBytes, Immutable)]
1403/// union MyUnion {
1404/// # variant: u8,
1405/// # /*
1406/// ...
1407/// # */
1408/// }
1409/// ```
1410///
1411/// # Portability
1412///
1413/// To ensure consistent endianness for enums with multi-byte representations,
1414/// explicitly specify and convert each discriminant using `.to_le()` or
1415/// `.to_be()`; e.g.:
1416///
1417/// ```
1418/// # use zerocopy_derive::TryFromBytes;
1419/// // `DataStoreVersion` is encoded in little-endian.
1420/// #[derive(TryFromBytes)]
1421/// #[repr(u32)]
1422/// pub enum DataStoreVersion {
1423/// /// Version 1 of the data store.
1424/// V1 = 9u32.to_le(),
1425///
1426/// /// Version 2 of the data store.
1427/// V2 = 10u32.to_le(),
1428/// }
1429/// ```
1430///
1431/// [safety conditions]: trait@TryFromBytes#safety
1432#[cfg(any(feature = "derive", test))]
1433#[cfg_attr(doc_cfg, doc(cfg(feature = "derive")))]
1434pub use zerocopy_derive::TryFromBytes;
1435
1436/// Types for which some bit patterns are valid.
1437///
1438/// A memory region of the appropriate length which contains initialized bytes
1439/// can be viewed as a `TryFromBytes` type so long as the runtime value of those
1440/// bytes corresponds to a [*valid instance*] of that type. For example,
1441/// [`bool`] is `TryFromBytes`, so zerocopy can transmute a [`u8`] into a
1442/// [`bool`] so long as it first checks that the value of the [`u8`] is `0` or
1443/// `1`.
1444///
1445/// # Implementation
1446///
1447/// **Do not implement this trait yourself!** Instead, use
1448/// [`#[derive(TryFromBytes)]`][derive]; e.g.:
1449///
1450/// ```
1451/// # use zerocopy_derive::{TryFromBytes, Immutable};
1452/// #[derive(TryFromBytes)]
1453/// struct MyStruct {
1454/// # /*
1455/// ...
1456/// # */
1457/// }
1458///
1459/// #[derive(TryFromBytes)]
1460/// #[repr(u8)]
1461/// enum MyEnum {
1462/// # V00,
1463/// # /*
1464/// ...
1465/// # */
1466/// }
1467///
1468/// #[derive(TryFromBytes, Immutable)]
1469/// union MyUnion {
1470/// # variant: u8,
1471/// # /*
1472/// ...
1473/// # */
1474/// }
1475/// ```
1476///
1477/// This derive ensures that the runtime check of whether bytes correspond to a
1478/// valid instance is sound. You **must** implement this trait via the derive.
1479///
1480/// # What is a "valid instance"?
1481///
1482/// In Rust, each type has *bit validity*, which refers to the set of bit
1483/// patterns which may appear in an instance of that type. It is impossible for
1484/// safe Rust code to produce values which violate bit validity (ie, values
1485/// outside of the "valid" set of bit patterns). If `unsafe` code produces an
1486/// invalid value, this is considered [undefined behavior].
1487///
1488/// Rust's bit validity rules are currently being decided, which means that some
1489/// types have three classes of bit patterns: those which are definitely valid,
1490/// and whose validity is documented in the language; those which may or may not
1491/// be considered valid at some point in the future; and those which are
1492/// definitely invalid.
1493///
1494/// Zerocopy takes a conservative approach, and only considers a bit pattern to
1495/// be valid if its validity is a documented guarantee provided by the
1496/// language.
1497///
1498/// For most use cases, Rust's current guarantees align with programmers'
1499/// intuitions about what ought to be valid. As a result, zerocopy's
1500/// conservatism should not affect most users.
1501///
1502/// If you are negatively affected by lack of support for a particular type,
1503/// we encourage you to let us know by [filing an issue][github-repo].
1504///
1505/// # `TryFromBytes` is not symmetrical with [`IntoBytes`]
1506///
1507/// There are some types which implement both `TryFromBytes` and [`IntoBytes`],
1508/// but for which `TryFromBytes` is not guaranteed to accept all byte sequences
1509/// produced by `IntoBytes`. In other words, for some `T: TryFromBytes +
1510/// IntoBytes`, there exist values of `t: T` such that
1511/// `TryFromBytes::try_ref_from_bytes(t.as_bytes()) == None`. Code should not
1512/// generally assume that values produced by `IntoBytes` will necessarily be
1513/// accepted as valid by `TryFromBytes`.
1514///
1515/// # Safety
1516///
1517/// On its own, `T: TryFromBytes` does not make any guarantees about the layout
1518/// or representation of `T`. It merely provides the ability to perform a
1519/// validity check at runtime via methods like [`try_ref_from_bytes`].
1520///
1521/// You must not rely on the `#[doc(hidden)]` internals of `TryFromBytes`.
1522/// Future releases of zerocopy may make backwards-breaking changes to these
1523/// items, including changes that only affect soundness, which may cause code
1524/// which uses those items to silently become unsound.
1525///
1526/// [undefined behavior]: https://raphlinus.github.io/programming/rust/2018/08/17/undefined-behavior.html
1527/// [github-repo]: https://github.com/google/zerocopy
1528/// [`try_ref_from_bytes`]: TryFromBytes::try_ref_from_bytes
1529/// [*valid instance*]: #what-is-a-valid-instance
1530#[cfg_attr(feature = "derive", doc = "[derive]: zerocopy_derive::TryFromBytes")]
1531#[cfg_attr(
1532 not(feature = "derive"),
1533 doc = concat!("[derive]: https://docs.rs/zerocopy/", env!("CARGO_PKG_VERSION"), "/zerocopy/derive.TryFromBytes.html"),
1534)]
1535#[cfg_attr(
1536 not(no_zerocopy_diagnostic_on_unimplemented_1_78_0),
1537 diagnostic::on_unimplemented(note = "Consider adding `#[derive(TryFromBytes)]` to `{Self}`")
1538)]
1539pub unsafe trait TryFromBytes {
1540 // The `Self: Sized` bound makes it so that `TryFromBytes` is still object
1541 // safe.
1542 #[doc(hidden)]
1543 fn only_derive_is_allowed_to_implement_this_trait()
1544 where
1545 Self: Sized;
1546
1547 /// Does a given memory range contain a valid instance of `Self`?
1548 ///
1549 /// # Safety
1550 ///
1551 /// Unsafe code may assume that, if `is_bit_valid(candidate)` returns true,
1552 /// `*candidate` contains a valid `Self`.
1553 ///
1554 /// # Panics
1555 ///
1556 /// `is_bit_valid` may panic. Callers are responsible for ensuring that any
1557 /// `unsafe` code remains sound even in the face of `is_bit_valid`
1558 /// panicking. (We support user-defined validation routines; so long as
1559 /// these routines are not required to be `unsafe`, there is no way to
1560 /// ensure that these do not generate panics.)
1561 ///
1562 /// Besides user-defined validation routines panicking, `is_bit_valid` will
1563 /// either panic or fail to compile if called on a pointer with [`Shared`]
1564 /// aliasing when `Self: !Immutable`.
1565 ///
1566 /// [`UnsafeCell`]: core::cell::UnsafeCell
1567 /// [`Shared`]: invariant::Shared
1568 #[doc(hidden)]
1569 fn is_bit_valid<A: invariant::Reference>(candidate: Maybe<'_, Self, A>) -> bool;
1570
1571 /// Attempts to interpret the given `source` as a `&Self`.
1572 ///
1573 /// If the bytes of `source` are a valid instance of `Self`, this method
1574 /// returns a reference to those bytes interpreted as a `Self`. If the
1575 /// length of `source` is not a [valid size of `Self`][valid-size], or if
1576 /// `source` is not appropriately aligned, or if `source` is not a valid
1577 /// instance of `Self`, this returns `Err`. If [`Self:
1578 /// Unaligned`][self-unaligned], you can [infallibly discard the alignment
1579 /// error][ConvertError::from].
1580 ///
1581 /// `Self` may be a sized type, a slice, or a [slice DST][slice-dst].
1582 ///
1583 /// [valid-size]: crate::KnownLayout#what-is-a-valid-size
1584 /// [self-unaligned]: Unaligned
1585 /// [slice-dst]: KnownLayout#dynamically-sized-types
1586 ///
1587 /// # Compile-Time Assertions
1588 ///
1589 /// This method cannot yet be used on unsized types whose dynamically-sized
1590 /// component is zero-sized. Attempting to use this method on such types
1591 /// results in a compile-time assertion error; e.g.:
1592 ///
1593 /// ```compile_fail,E0080
1594 /// use zerocopy::*;
1595 /// # use zerocopy_derive::*;
1596 ///
1597 /// #[derive(TryFromBytes, Immutable, KnownLayout)]
1598 /// #[repr(C)]
1599 /// struct ZSTy {
1600 /// leading_sized: u16,
1601 /// trailing_dst: [()],
1602 /// }
1603 ///
1604 /// let _ = ZSTy::try_ref_from_bytes(0u16.as_bytes()); // âš Compile Error!
1605 /// ```
1606 ///
1607 /// # Examples
1608 ///
1609 /// ```
1610 /// use zerocopy::TryFromBytes;
1611 /// # use zerocopy_derive::*;
1612 ///
1613 /// // The only valid value of this type is the byte `0xC0`
1614 /// #[derive(TryFromBytes, KnownLayout, Immutable)]
1615 /// #[repr(u8)]
1616 /// enum C0 { xC0 = 0xC0 }
1617 ///
1618 /// // The only valid value of this type is the byte sequence `0xC0C0`.
1619 /// #[derive(TryFromBytes, KnownLayout, Immutable)]
1620 /// #[repr(C)]
1621 /// struct C0C0(C0, C0);
1622 ///
1623 /// #[derive(TryFromBytes, KnownLayout, Immutable)]
1624 /// #[repr(C)]
1625 /// struct Packet {
1626 /// magic_number: C0C0,
1627 /// mug_size: u8,
1628 /// temperature: u8,
1629 /// marshmallows: [[u8; 2]],
1630 /// }
1631 ///
1632 /// let bytes = &[0xC0, 0xC0, 240, 77, 0, 1, 2, 3, 4, 5][..];
1633 ///
1634 /// let packet = Packet::try_ref_from_bytes(bytes).unwrap();
1635 ///
1636 /// assert_eq!(packet.mug_size, 240);
1637 /// assert_eq!(packet.temperature, 77);
1638 /// assert_eq!(packet.marshmallows, [[0, 1], [2, 3], [4, 5]]);
1639 ///
1640 /// // These bytes are not valid instance of `Packet`.
1641 /// let bytes = &[0x10, 0xC0, 240, 77, 0, 1, 2, 3, 4, 5][..];
1642 /// assert!(Packet::try_ref_from_bytes(bytes).is_err());
1643 /// ```
1644 #[must_use = "has no side effects"]
1645 #[inline]
1646 fn try_ref_from_bytes(source: &[u8]) -> Result<&Self, TryCastError<&[u8], Self>>
1647 where
1648 Self: KnownLayout + Immutable,
1649 {
1650 static_assert_dst_is_not_zst!(Self);
1651 match Ptr::from_ref(source).try_cast_into_no_leftover::<Self, BecauseImmutable>(None) {
1652 Ok(source) => {
1653 // This call may panic. If that happens, it doesn't cause any soundness
1654 // issues, as we have not generated any invalid state which we need to
1655 // fix before returning.
1656 //
1657 // Note that one panic or post-monomorphization error condition is
1658 // calling `try_into_valid` (and thus `is_bit_valid`) with a shared
1659 // pointer when `Self: !Immutable`. Since `Self: Immutable`, this panic
1660 // condition will not happen.
1661 match source.try_into_valid() {
1662 Ok(valid) => Ok(valid.as_ref()),
1663 Err(e) => {
1664 Err(e.map_src(|src| src.as_bytes::<BecauseImmutable>().as_ref()).into())
1665 }
1666 }
1667 }
1668 Err(e) => Err(e.map_src(Ptr::as_ref).into()),
1669 }
1670 }
1671
1672 /// Attempts to interpret the prefix of the given `source` as a `&Self`.
1673 ///
1674 /// This method computes the [largest possible size of `Self`][valid-size]
1675 /// that can fit in the leading bytes of `source`. If that prefix is a valid
1676 /// instance of `Self`, this method returns a reference to those bytes
1677 /// interpreted as `Self`, and a reference to the remaining bytes. If there
1678 /// are insufficient bytes, or if `source` is not appropriately aligned, or
1679 /// if those bytes are not a valid instance of `Self`, this returns `Err`.
1680 /// If [`Self: Unaligned`][self-unaligned], you can [infallibly discard the
1681 /// alignment error][ConvertError::from].
1682 ///
1683 /// `Self` may be a sized type, a slice, or a [slice DST][slice-dst].
1684 ///
1685 /// [valid-size]: crate::KnownLayout#what-is-a-valid-size
1686 /// [self-unaligned]: Unaligned
1687 /// [slice-dst]: KnownLayout#dynamically-sized-types
1688 ///
1689 /// # Compile-Time Assertions
1690 ///
1691 /// This method cannot yet be used on unsized types whose dynamically-sized
1692 /// component is zero-sized. Attempting to use this method on such types
1693 /// results in a compile-time assertion error; e.g.:
1694 ///
1695 /// ```compile_fail,E0080
1696 /// use zerocopy::*;
1697 /// # use zerocopy_derive::*;
1698 ///
1699 /// #[derive(TryFromBytes, Immutable, KnownLayout)]
1700 /// #[repr(C)]
1701 /// struct ZSTy {
1702 /// leading_sized: u16,
1703 /// trailing_dst: [()],
1704 /// }
1705 ///
1706 /// let _ = ZSTy::try_ref_from_prefix(0u16.as_bytes()); // âš Compile Error!
1707 /// ```
1708 ///
1709 /// # Examples
1710 ///
1711 /// ```
1712 /// use zerocopy::TryFromBytes;
1713 /// # use zerocopy_derive::*;
1714 ///
1715 /// // The only valid value of this type is the byte `0xC0`
1716 /// #[derive(TryFromBytes, KnownLayout, Immutable)]
1717 /// #[repr(u8)]
1718 /// enum C0 { xC0 = 0xC0 }
1719 ///
1720 /// // The only valid value of this type is the bytes `0xC0C0`.
1721 /// #[derive(TryFromBytes, KnownLayout, Immutable)]
1722 /// #[repr(C)]
1723 /// struct C0C0(C0, C0);
1724 ///
1725 /// #[derive(TryFromBytes, KnownLayout, Immutable)]
1726 /// #[repr(C)]
1727 /// struct Packet {
1728 /// magic_number: C0C0,
1729 /// mug_size: u8,
1730 /// temperature: u8,
1731 /// marshmallows: [[u8; 2]],
1732 /// }
1733 ///
1734 /// // These are more bytes than are needed to encode a `Packet`.
1735 /// let bytes = &[0xC0, 0xC0, 240, 77, 0, 1, 2, 3, 4, 5, 6][..];
1736 ///
1737 /// let (packet, suffix) = Packet::try_ref_from_prefix(bytes).unwrap();
1738 ///
1739 /// assert_eq!(packet.mug_size, 240);
1740 /// assert_eq!(packet.temperature, 77);
1741 /// assert_eq!(packet.marshmallows, [[0, 1], [2, 3], [4, 5]]);
1742 /// assert_eq!(suffix, &[6u8][..]);
1743 ///
1744 /// // These bytes are not valid instance of `Packet`.
1745 /// let bytes = &[0x10, 0xC0, 240, 77, 0, 1, 2, 3, 4, 5, 6][..];
1746 /// assert!(Packet::try_ref_from_prefix(bytes).is_err());
1747 /// ```
1748 #[must_use = "has no side effects"]
1749 #[inline]
1750 fn try_ref_from_prefix(source: &[u8]) -> Result<(&Self, &[u8]), TryCastError<&[u8], Self>>
1751 where
1752 Self: KnownLayout + Immutable,
1753 {
1754 static_assert_dst_is_not_zst!(Self);
1755 try_ref_from_prefix_suffix(source, CastType::Prefix, None)
1756 }
1757
1758 /// Attempts to interpret the suffix of the given `source` as a `&Self`.
1759 ///
1760 /// This method computes the [largest possible size of `Self`][valid-size]
1761 /// that can fit in the trailing bytes of `source`. If that suffix is a
1762 /// valid instance of `Self`, this method returns a reference to those bytes
1763 /// interpreted as `Self`, and a reference to the preceding bytes. If there
1764 /// are insufficient bytes, or if the suffix of `source` would not be
1765 /// appropriately aligned, or if the suffix is not a valid instance of
1766 /// `Self`, this returns `Err`. If [`Self: Unaligned`][self-unaligned], you
1767 /// can [infallibly discard the alignment error][ConvertError::from].
1768 ///
1769 /// `Self` may be a sized type, a slice, or a [slice DST][slice-dst].
1770 ///
1771 /// [valid-size]: crate::KnownLayout#what-is-a-valid-size
1772 /// [self-unaligned]: Unaligned
1773 /// [slice-dst]: KnownLayout#dynamically-sized-types
1774 ///
1775 /// # Compile-Time Assertions
1776 ///
1777 /// This method cannot yet be used on unsized types whose dynamically-sized
1778 /// component is zero-sized. Attempting to use this method on such types
1779 /// results in a compile-time assertion error; e.g.:
1780 ///
1781 /// ```compile_fail,E0080
1782 /// use zerocopy::*;
1783 /// # use zerocopy_derive::*;
1784 ///
1785 /// #[derive(TryFromBytes, Immutable, KnownLayout)]
1786 /// #[repr(C)]
1787 /// struct ZSTy {
1788 /// leading_sized: u16,
1789 /// trailing_dst: [()],
1790 /// }
1791 ///
1792 /// let _ = ZSTy::try_ref_from_suffix(0u16.as_bytes()); // âš Compile Error!
1793 /// ```
1794 ///
1795 /// # Examples
1796 ///
1797 /// ```
1798 /// use zerocopy::TryFromBytes;
1799 /// # use zerocopy_derive::*;
1800 ///
1801 /// // The only valid value of this type is the byte `0xC0`
1802 /// #[derive(TryFromBytes, KnownLayout, Immutable)]
1803 /// #[repr(u8)]
1804 /// enum C0 { xC0 = 0xC0 }
1805 ///
1806 /// // The only valid value of this type is the bytes `0xC0C0`.
1807 /// #[derive(TryFromBytes, KnownLayout, Immutable)]
1808 /// #[repr(C)]
1809 /// struct C0C0(C0, C0);
1810 ///
1811 /// #[derive(TryFromBytes, KnownLayout, Immutable)]
1812 /// #[repr(C)]
1813 /// struct Packet {
1814 /// magic_number: C0C0,
1815 /// mug_size: u8,
1816 /// temperature: u8,
1817 /// marshmallows: [[u8; 2]],
1818 /// }
1819 ///
1820 /// // These are more bytes than are needed to encode a `Packet`.
1821 /// let bytes = &[0, 0xC0, 0xC0, 240, 77, 2, 3, 4, 5, 6, 7][..];
1822 ///
1823 /// let (prefix, packet) = Packet::try_ref_from_suffix(bytes).unwrap();
1824 ///
1825 /// assert_eq!(packet.mug_size, 240);
1826 /// assert_eq!(packet.temperature, 77);
1827 /// assert_eq!(packet.marshmallows, [[2, 3], [4, 5], [6, 7]]);
1828 /// assert_eq!(prefix, &[0u8][..]);
1829 ///
1830 /// // These bytes are not valid instance of `Packet`.
1831 /// let bytes = &[0, 1, 2, 3, 4, 5, 6, 77, 240, 0xC0, 0x10][..];
1832 /// assert!(Packet::try_ref_from_suffix(bytes).is_err());
1833 /// ```
1834 #[must_use = "has no side effects"]
1835 #[inline]
1836 fn try_ref_from_suffix(source: &[u8]) -> Result<(&[u8], &Self), TryCastError<&[u8], Self>>
1837 where
1838 Self: KnownLayout + Immutable,
1839 {
1840 static_assert_dst_is_not_zst!(Self);
1841 try_ref_from_prefix_suffix(source, CastType::Suffix, None).map(swap)
1842 }
1843
1844 /// Attempts to interpret the given `source` as a `&mut Self` without
1845 /// copying.
1846 ///
1847 /// If the bytes of `source` are a valid instance of `Self`, this method
1848 /// returns a reference to those bytes interpreted as a `Self`. If the
1849 /// length of `source` is not a [valid size of `Self`][valid-size], or if
1850 /// `source` is not appropriately aligned, or if `source` is not a valid
1851 /// instance of `Self`, this returns `Err`. If [`Self:
1852 /// Unaligned`][self-unaligned], you can [infallibly discard the alignment
1853 /// error][ConvertError::from].
1854 ///
1855 /// `Self` may be a sized type, a slice, or a [slice DST][slice-dst].
1856 ///
1857 /// [valid-size]: crate::KnownLayout#what-is-a-valid-size
1858 /// [self-unaligned]: Unaligned
1859 /// [slice-dst]: KnownLayout#dynamically-sized-types
1860 ///
1861 /// # Compile-Time Assertions
1862 ///
1863 /// This method cannot yet be used on unsized types whose dynamically-sized
1864 /// component is zero-sized. Attempting to use this method on such types
1865 /// results in a compile-time assertion error; e.g.:
1866 ///
1867 /// ```compile_fail,E0080
1868 /// use zerocopy::*;
1869 /// # use zerocopy_derive::*;
1870 ///
1871 /// #[derive(TryFromBytes, IntoBytes, KnownLayout)]
1872 /// #[repr(C, packed)]
1873 /// struct ZSTy {
1874 /// leading_sized: [u8; 2],
1875 /// trailing_dst: [()],
1876 /// }
1877 ///
1878 /// let mut source = [85, 85];
1879 /// let _ = ZSTy::try_mut_from_bytes(&mut source[..]); // âš Compile Error!
1880 /// ```
1881 ///
1882 /// # Examples
1883 ///
1884 /// ```
1885 /// use zerocopy::TryFromBytes;
1886 /// # use zerocopy_derive::*;
1887 ///
1888 /// // The only valid value of this type is the byte `0xC0`
1889 /// #[derive(TryFromBytes, IntoBytes, KnownLayout)]
1890 /// #[repr(u8)]
1891 /// enum C0 { xC0 = 0xC0 }
1892 ///
1893 /// // The only valid value of this type is the bytes `0xC0C0`.
1894 /// #[derive(TryFromBytes, IntoBytes, KnownLayout)]
1895 /// #[repr(C)]
1896 /// struct C0C0(C0, C0);
1897 ///
1898 /// #[derive(TryFromBytes, IntoBytes, KnownLayout)]
1899 /// #[repr(C, packed)]
1900 /// struct Packet {
1901 /// magic_number: C0C0,
1902 /// mug_size: u8,
1903 /// temperature: u8,
1904 /// marshmallows: [[u8; 2]],
1905 /// }
1906 ///
1907 /// let bytes = &mut [0xC0, 0xC0, 240, 77, 0, 1, 2, 3, 4, 5][..];
1908 ///
1909 /// let packet = Packet::try_mut_from_bytes(bytes).unwrap();
1910 ///
1911 /// assert_eq!(packet.mug_size, 240);
1912 /// assert_eq!(packet.temperature, 77);
1913 /// assert_eq!(packet.marshmallows, [[0, 1], [2, 3], [4, 5]]);
1914 ///
1915 /// packet.temperature = 111;
1916 ///
1917 /// assert_eq!(bytes, [0xC0, 0xC0, 240, 111, 0, 1, 2, 3, 4, 5]);
1918 ///
1919 /// // These bytes are not valid instance of `Packet`.
1920 /// let bytes = &mut [0x10, 0xC0, 240, 77, 0, 1, 2, 3, 4, 5, 6][..];
1921 /// assert!(Packet::try_mut_from_bytes(bytes).is_err());
1922 /// ```
1923 #[must_use = "has no side effects"]
1924 #[inline]
1925 fn try_mut_from_bytes(bytes: &mut [u8]) -> Result<&mut Self, TryCastError<&mut [u8], Self>>
1926 where
1927 Self: KnownLayout + IntoBytes,
1928 {
1929 static_assert_dst_is_not_zst!(Self);
1930 match Ptr::from_mut(bytes).try_cast_into_no_leftover::<Self, BecauseExclusive>(None) {
1931 Ok(source) => {
1932 // This call may panic. If that happens, it doesn't cause any soundness
1933 // issues, as we have not generated any invalid state which we need to
1934 // fix before returning.
1935 //
1936 // Note that one panic or post-monomorphization error condition is
1937 // calling `try_into_valid` (and thus `is_bit_valid`) with a shared
1938 // pointer when `Self: !Immutable`. Since `Self: Immutable`, this panic
1939 // condition will not happen.
1940 match source.try_into_valid() {
1941 Ok(source) => Ok(source.as_mut()),
1942 Err(e) => {
1943 Err(e.map_src(|src| src.as_bytes::<BecauseExclusive>().as_mut()).into())
1944 }
1945 }
1946 }
1947 Err(e) => Err(e.map_src(Ptr::as_mut).into()),
1948 }
1949 }
1950
1951 /// Attempts to interpret the prefix of the given `source` as a `&mut
1952 /// Self`.
1953 ///
1954 /// This method computes the [largest possible size of `Self`][valid-size]
1955 /// that can fit in the leading bytes of `source`. If that prefix is a valid
1956 /// instance of `Self`, this method returns a reference to those bytes
1957 /// interpreted as `Self`, and a reference to the remaining bytes. If there
1958 /// are insufficient bytes, or if `source` is not appropriately aligned, or
1959 /// if the bytes are not a valid instance of `Self`, this returns `Err`. If
1960 /// [`Self: Unaligned`][self-unaligned], you can [infallibly discard the
1961 /// alignment error][ConvertError::from].
1962 ///
1963 /// `Self` may be a sized type, a slice, or a [slice DST][slice-dst].
1964 ///
1965 /// [valid-size]: crate::KnownLayout#what-is-a-valid-size
1966 /// [self-unaligned]: Unaligned
1967 /// [slice-dst]: KnownLayout#dynamically-sized-types
1968 ///
1969 /// # Compile-Time Assertions
1970 ///
1971 /// This method cannot yet be used on unsized types whose dynamically-sized
1972 /// component is zero-sized. Attempting to use this method on such types
1973 /// results in a compile-time assertion error; e.g.:
1974 ///
1975 /// ```compile_fail,E0080
1976 /// use zerocopy::*;
1977 /// # use zerocopy_derive::*;
1978 ///
1979 /// #[derive(TryFromBytes, IntoBytes, KnownLayout)]
1980 /// #[repr(C, packed)]
1981 /// struct ZSTy {
1982 /// leading_sized: [u8; 2],
1983 /// trailing_dst: [()],
1984 /// }
1985 ///
1986 /// let mut source = [85, 85];
1987 /// let _ = ZSTy::try_mut_from_prefix(&mut source[..]); // âš Compile Error!
1988 /// ```
1989 ///
1990 /// # Examples
1991 ///
1992 /// ```
1993 /// use zerocopy::TryFromBytes;
1994 /// # use zerocopy_derive::*;
1995 ///
1996 /// // The only valid value of this type is the byte `0xC0`
1997 /// #[derive(TryFromBytes, IntoBytes, KnownLayout)]
1998 /// #[repr(u8)]
1999 /// enum C0 { xC0 = 0xC0 }
2000 ///
2001 /// // The only valid value of this type is the bytes `0xC0C0`.
2002 /// #[derive(TryFromBytes, IntoBytes, KnownLayout)]
2003 /// #[repr(C)]
2004 /// struct C0C0(C0, C0);
2005 ///
2006 /// #[derive(TryFromBytes, IntoBytes, KnownLayout)]
2007 /// #[repr(C, packed)]
2008 /// struct Packet {
2009 /// magic_number: C0C0,
2010 /// mug_size: u8,
2011 /// temperature: u8,
2012 /// marshmallows: [[u8; 2]],
2013 /// }
2014 ///
2015 /// // These are more bytes than are needed to encode a `Packet`.
2016 /// let bytes = &mut [0xC0, 0xC0, 240, 77, 0, 1, 2, 3, 4, 5, 6][..];
2017 ///
2018 /// let (packet, suffix) = Packet::try_mut_from_prefix(bytes).unwrap();
2019 ///
2020 /// assert_eq!(packet.mug_size, 240);
2021 /// assert_eq!(packet.temperature, 77);
2022 /// assert_eq!(packet.marshmallows, [[0, 1], [2, 3], [4, 5]]);
2023 /// assert_eq!(suffix, &[6u8][..]);
2024 ///
2025 /// packet.temperature = 111;
2026 /// suffix[0] = 222;
2027 ///
2028 /// assert_eq!(bytes, [0xC0, 0xC0, 240, 111, 0, 1, 2, 3, 4, 5, 222]);
2029 ///
2030 /// // These bytes are not valid instance of `Packet`.
2031 /// let bytes = &mut [0x10, 0xC0, 240, 77, 0, 1, 2, 3, 4, 5, 6][..];
2032 /// assert!(Packet::try_mut_from_prefix(bytes).is_err());
2033 /// ```
2034 #[must_use = "has no side effects"]
2035 #[inline]
2036 fn try_mut_from_prefix(
2037 source: &mut [u8],
2038 ) -> Result<(&mut Self, &mut [u8]), TryCastError<&mut [u8], Self>>
2039 where
2040 Self: KnownLayout + IntoBytes,
2041 {
2042 static_assert_dst_is_not_zst!(Self);
2043 try_mut_from_prefix_suffix(source, CastType::Prefix, None)
2044 }
2045
2046 /// Attempts to interpret the suffix of the given `source` as a `&mut
2047 /// Self`.
2048 ///
2049 /// This method computes the [largest possible size of `Self`][valid-size]
2050 /// that can fit in the trailing bytes of `source`. If that suffix is a
2051 /// valid instance of `Self`, this method returns a reference to those bytes
2052 /// interpreted as `Self`, and a reference to the preceding bytes. If there
2053 /// are insufficient bytes, or if the suffix of `source` would not be
2054 /// appropriately aligned, or if the suffix is not a valid instance of
2055 /// `Self`, this returns `Err`. If [`Self: Unaligned`][self-unaligned], you
2056 /// can [infallibly discard the alignment error][ConvertError::from].
2057 ///
2058 /// `Self` may be a sized type, a slice, or a [slice DST][slice-dst].
2059 ///
2060 /// [valid-size]: crate::KnownLayout#what-is-a-valid-size
2061 /// [self-unaligned]: Unaligned
2062 /// [slice-dst]: KnownLayout#dynamically-sized-types
2063 ///
2064 /// # Compile-Time Assertions
2065 ///
2066 /// This method cannot yet be used on unsized types whose dynamically-sized
2067 /// component is zero-sized. Attempting to use this method on such types
2068 /// results in a compile-time assertion error; e.g.:
2069 ///
2070 /// ```compile_fail,E0080
2071 /// use zerocopy::*;
2072 /// # use zerocopy_derive::*;
2073 ///
2074 /// #[derive(TryFromBytes, IntoBytes, KnownLayout)]
2075 /// #[repr(C, packed)]
2076 /// struct ZSTy {
2077 /// leading_sized: u16,
2078 /// trailing_dst: [()],
2079 /// }
2080 ///
2081 /// let mut source = [85, 85];
2082 /// let _ = ZSTy::try_mut_from_suffix(&mut source[..]); // âš Compile Error!
2083 /// ```
2084 ///
2085 /// # Examples
2086 ///
2087 /// ```
2088 /// use zerocopy::TryFromBytes;
2089 /// # use zerocopy_derive::*;
2090 ///
2091 /// // The only valid value of this type is the byte `0xC0`
2092 /// #[derive(TryFromBytes, IntoBytes, KnownLayout)]
2093 /// #[repr(u8)]
2094 /// enum C0 { xC0 = 0xC0 }
2095 ///
2096 /// // The only valid value of this type is the bytes `0xC0C0`.
2097 /// #[derive(TryFromBytes, IntoBytes, KnownLayout)]
2098 /// #[repr(C)]
2099 /// struct C0C0(C0, C0);
2100 ///
2101 /// #[derive(TryFromBytes, IntoBytes, KnownLayout)]
2102 /// #[repr(C, packed)]
2103 /// struct Packet {
2104 /// magic_number: C0C0,
2105 /// mug_size: u8,
2106 /// temperature: u8,
2107 /// marshmallows: [[u8; 2]],
2108 /// }
2109 ///
2110 /// // These are more bytes than are needed to encode a `Packet`.
2111 /// let bytes = &mut [0, 0xC0, 0xC0, 240, 77, 2, 3, 4, 5, 6, 7][..];
2112 ///
2113 /// let (prefix, packet) = Packet::try_mut_from_suffix(bytes).unwrap();
2114 ///
2115 /// assert_eq!(packet.mug_size, 240);
2116 /// assert_eq!(packet.temperature, 77);
2117 /// assert_eq!(packet.marshmallows, [[2, 3], [4, 5], [6, 7]]);
2118 /// assert_eq!(prefix, &[0u8][..]);
2119 ///
2120 /// prefix[0] = 111;
2121 /// packet.temperature = 222;
2122 ///
2123 /// assert_eq!(bytes, [111, 0xC0, 0xC0, 240, 222, 2, 3, 4, 5, 6, 7]);
2124 ///
2125 /// // These bytes are not valid instance of `Packet`.
2126 /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 77, 240, 0xC0, 0x10][..];
2127 /// assert!(Packet::try_mut_from_suffix(bytes).is_err());
2128 /// ```
2129 #[must_use = "has no side effects"]
2130 #[inline]
2131 fn try_mut_from_suffix(
2132 source: &mut [u8],
2133 ) -> Result<(&mut [u8], &mut Self), TryCastError<&mut [u8], Self>>
2134 where
2135 Self: KnownLayout + IntoBytes,
2136 {
2137 static_assert_dst_is_not_zst!(Self);
2138 try_mut_from_prefix_suffix(source, CastType::Suffix, None).map(swap)
2139 }
2140
2141 /// Attempts to interpret the given `source` as a `&Self` with a DST length
2142 /// equal to `count`.
2143 ///
2144 /// This method attempts to return a reference to `source` interpreted as a
2145 /// `Self` with `count` trailing elements. If the length of `source` is not
2146 /// equal to the size of `Self` with `count` elements, if `source` is not
2147 /// appropriately aligned, or if `source` does not contain a valid instance
2148 /// of `Self`, this returns `Err`. If [`Self: Unaligned`][self-unaligned],
2149 /// you can [infallibly discard the alignment error][ConvertError::from].
2150 ///
2151 /// [self-unaligned]: Unaligned
2152 /// [slice-dst]: KnownLayout#dynamically-sized-types
2153 ///
2154 /// # Examples
2155 ///
2156 /// ```
2157 /// # #![allow(non_camel_case_types)] // For C0::xC0
2158 /// use zerocopy::TryFromBytes;
2159 /// # use zerocopy_derive::*;
2160 ///
2161 /// // The only valid value of this type is the byte `0xC0`
2162 /// #[derive(TryFromBytes, KnownLayout, Immutable)]
2163 /// #[repr(u8)]
2164 /// enum C0 { xC0 = 0xC0 }
2165 ///
2166 /// // The only valid value of this type is the bytes `0xC0C0`.
2167 /// #[derive(TryFromBytes, KnownLayout, Immutable)]
2168 /// #[repr(C)]
2169 /// struct C0C0(C0, C0);
2170 ///
2171 /// #[derive(TryFromBytes, KnownLayout, Immutable)]
2172 /// #[repr(C)]
2173 /// struct Packet {
2174 /// magic_number: C0C0,
2175 /// mug_size: u8,
2176 /// temperature: u8,
2177 /// marshmallows: [[u8; 2]],
2178 /// }
2179 ///
2180 /// let bytes = &[0xC0, 0xC0, 240, 77, 2, 3, 4, 5, 6, 7][..];
2181 ///
2182 /// let packet = Packet::try_ref_from_bytes_with_elems(bytes, 3).unwrap();
2183 ///
2184 /// assert_eq!(packet.mug_size, 240);
2185 /// assert_eq!(packet.temperature, 77);
2186 /// assert_eq!(packet.marshmallows, [[2, 3], [4, 5], [6, 7]]);
2187 ///
2188 /// // These bytes are not valid instance of `Packet`.
2189 /// let bytes = &[0, 1, 2, 3, 4, 5, 6, 77, 240, 0xC0, 0xC0][..];
2190 /// assert!(Packet::try_ref_from_bytes_with_elems(bytes, 3).is_err());
2191 /// ```
2192 ///
2193 /// Since an explicit `count` is provided, this method supports types with
2194 /// zero-sized trailing slice elements. Methods such as [`try_ref_from_bytes`]
2195 /// which do not take an explicit count do not support such types.
2196 ///
2197 /// ```
2198 /// use core::num::NonZeroU16;
2199 /// use zerocopy::*;
2200 /// # use zerocopy_derive::*;
2201 ///
2202 /// #[derive(TryFromBytes, Immutable, KnownLayout)]
2203 /// #[repr(C)]
2204 /// struct ZSTy {
2205 /// leading_sized: NonZeroU16,
2206 /// trailing_dst: [()],
2207 /// }
2208 ///
2209 /// let src = 0xCAFEu16.as_bytes();
2210 /// let zsty = ZSTy::try_ref_from_bytes_with_elems(src, 42).unwrap();
2211 /// assert_eq!(zsty.trailing_dst.len(), 42);
2212 /// ```
2213 ///
2214 /// [`try_ref_from_bytes`]: TryFromBytes::try_ref_from_bytes
2215 #[must_use = "has no side effects"]
2216 #[inline]
2217 fn try_ref_from_bytes_with_elems(
2218 source: &[u8],
2219 count: usize,
2220 ) -> Result<&Self, TryCastError<&[u8], Self>>
2221 where
2222 Self: KnownLayout<PointerMetadata = usize> + Immutable,
2223 {
2224 match Ptr::from_ref(source).try_cast_into_no_leftover::<Self, BecauseImmutable>(Some(count))
2225 {
2226 Ok(source) => {
2227 // This call may panic. If that happens, it doesn't cause any soundness
2228 // issues, as we have not generated any invalid state which we need to
2229 // fix before returning.
2230 //
2231 // Note that one panic or post-monomorphization error condition is
2232 // calling `try_into_valid` (and thus `is_bit_valid`) with a shared
2233 // pointer when `Self: !Immutable`. Since `Self: Immutable`, this panic
2234 // condition will not happen.
2235 match source.try_into_valid() {
2236 Ok(source) => Ok(source.as_ref()),
2237 Err(e) => {
2238 Err(e.map_src(|src| src.as_bytes::<BecauseImmutable>().as_ref()).into())
2239 }
2240 }
2241 }
2242 Err(e) => Err(e.map_src(Ptr::as_ref).into()),
2243 }
2244 }
2245
2246 /// Attempts to interpret the prefix of the given `source` as a `&Self` with
2247 /// a DST length equal to `count`.
2248 ///
2249 /// This method attempts to return a reference to the prefix of `source`
2250 /// interpreted as a `Self` with `count` trailing elements, and a reference
2251 /// to the remaining bytes. If the length of `source` is less than the size
2252 /// of `Self` with `count` elements, if `source` is not appropriately
2253 /// aligned, or if the prefix of `source` does not contain a valid instance
2254 /// of `Self`, this returns `Err`. If [`Self: Unaligned`][self-unaligned],
2255 /// you can [infallibly discard the alignment error][ConvertError::from].
2256 ///
2257 /// [self-unaligned]: Unaligned
2258 /// [slice-dst]: KnownLayout#dynamically-sized-types
2259 ///
2260 /// # Examples
2261 ///
2262 /// ```
2263 /// # #![allow(non_camel_case_types)] // For C0::xC0
2264 /// use zerocopy::TryFromBytes;
2265 /// # use zerocopy_derive::*;
2266 ///
2267 /// // The only valid value of this type is the byte `0xC0`
2268 /// #[derive(TryFromBytes, KnownLayout, Immutable)]
2269 /// #[repr(u8)]
2270 /// enum C0 { xC0 = 0xC0 }
2271 ///
2272 /// // The only valid value of this type is the bytes `0xC0C0`.
2273 /// #[derive(TryFromBytes, KnownLayout, Immutable)]
2274 /// #[repr(C)]
2275 /// struct C0C0(C0, C0);
2276 ///
2277 /// #[derive(TryFromBytes, KnownLayout, Immutable)]
2278 /// #[repr(C)]
2279 /// struct Packet {
2280 /// magic_number: C0C0,
2281 /// mug_size: u8,
2282 /// temperature: u8,
2283 /// marshmallows: [[u8; 2]],
2284 /// }
2285 ///
2286 /// let bytes = &[0xC0, 0xC0, 240, 77, 2, 3, 4, 5, 6, 7, 8][..];
2287 ///
2288 /// let (packet, suffix) = Packet::try_ref_from_prefix_with_elems(bytes, 3).unwrap();
2289 ///
2290 /// assert_eq!(packet.mug_size, 240);
2291 /// assert_eq!(packet.temperature, 77);
2292 /// assert_eq!(packet.marshmallows, [[2, 3], [4, 5], [6, 7]]);
2293 /// assert_eq!(suffix, &[8u8][..]);
2294 ///
2295 /// // These bytes are not valid instance of `Packet`.
2296 /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7, 8, 77, 240, 0xC0, 0xC0][..];
2297 /// assert!(Packet::try_ref_from_prefix_with_elems(bytes, 3).is_err());
2298 /// ```
2299 ///
2300 /// Since an explicit `count` is provided, this method supports types with
2301 /// zero-sized trailing slice elements. Methods such as [`try_ref_from_prefix`]
2302 /// which do not take an explicit count do not support such types.
2303 ///
2304 /// ```
2305 /// use core::num::NonZeroU16;
2306 /// use zerocopy::*;
2307 /// # use zerocopy_derive::*;
2308 ///
2309 /// #[derive(TryFromBytes, Immutable, KnownLayout)]
2310 /// #[repr(C)]
2311 /// struct ZSTy {
2312 /// leading_sized: NonZeroU16,
2313 /// trailing_dst: [()],
2314 /// }
2315 ///
2316 /// let src = 0xCAFEu16.as_bytes();
2317 /// let (zsty, _) = ZSTy::try_ref_from_prefix_with_elems(src, 42).unwrap();
2318 /// assert_eq!(zsty.trailing_dst.len(), 42);
2319 /// ```
2320 ///
2321 /// [`try_ref_from_prefix`]: TryFromBytes::try_ref_from_prefix
2322 #[must_use = "has no side effects"]
2323 #[inline]
2324 fn try_ref_from_prefix_with_elems(
2325 source: &[u8],
2326 count: usize,
2327 ) -> Result<(&Self, &[u8]), TryCastError<&[u8], Self>>
2328 where
2329 Self: KnownLayout<PointerMetadata = usize> + Immutable,
2330 {
2331 try_ref_from_prefix_suffix(source, CastType::Prefix, Some(count))
2332 }
2333
2334 /// Attempts to interpret the suffix of the given `source` as a `&Self` with
2335 /// a DST length equal to `count`.
2336 ///
2337 /// This method attempts to return a reference to the suffix of `source`
2338 /// interpreted as a `Self` with `count` trailing elements, and a reference
2339 /// to the preceding bytes. If the length of `source` is less than the size
2340 /// of `Self` with `count` elements, if the suffix of `source` is not
2341 /// appropriately aligned, or if the suffix of `source` does not contain a
2342 /// valid instance of `Self`, this returns `Err`. If [`Self:
2343 /// Unaligned`][self-unaligned], you can [infallibly discard the alignment
2344 /// error][ConvertError::from].
2345 ///
2346 /// [self-unaligned]: Unaligned
2347 /// [slice-dst]: KnownLayout#dynamically-sized-types
2348 ///
2349 /// # Examples
2350 ///
2351 /// ```
2352 /// # #![allow(non_camel_case_types)] // For C0::xC0
2353 /// use zerocopy::TryFromBytes;
2354 /// # use zerocopy_derive::*;
2355 ///
2356 /// // The only valid value of this type is the byte `0xC0`
2357 /// #[derive(TryFromBytes, KnownLayout, Immutable)]
2358 /// #[repr(u8)]
2359 /// enum C0 { xC0 = 0xC0 }
2360 ///
2361 /// // The only valid value of this type is the bytes `0xC0C0`.
2362 /// #[derive(TryFromBytes, KnownLayout, Immutable)]
2363 /// #[repr(C)]
2364 /// struct C0C0(C0, C0);
2365 ///
2366 /// #[derive(TryFromBytes, KnownLayout, Immutable)]
2367 /// #[repr(C)]
2368 /// struct Packet {
2369 /// magic_number: C0C0,
2370 /// mug_size: u8,
2371 /// temperature: u8,
2372 /// marshmallows: [[u8; 2]],
2373 /// }
2374 ///
2375 /// let bytes = &[123, 0xC0, 0xC0, 240, 77, 2, 3, 4, 5, 6, 7][..];
2376 ///
2377 /// let (prefix, packet) = Packet::try_ref_from_suffix_with_elems(bytes, 3).unwrap();
2378 ///
2379 /// assert_eq!(packet.mug_size, 240);
2380 /// assert_eq!(packet.temperature, 77);
2381 /// assert_eq!(packet.marshmallows, [[2, 3], [4, 5], [6, 7]]);
2382 /// assert_eq!(prefix, &[123u8][..]);
2383 ///
2384 /// // These bytes are not valid instance of `Packet`.
2385 /// let bytes = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 77, 240, 0xC0, 0xC0][..];
2386 /// assert!(Packet::try_ref_from_suffix_with_elems(bytes, 3).is_err());
2387 /// ```
2388 ///
2389 /// Since an explicit `count` is provided, this method supports types with
2390 /// zero-sized trailing slice elements. Methods such as [`try_ref_from_prefix`]
2391 /// which do not take an explicit count do not support such types.
2392 ///
2393 /// ```
2394 /// use core::num::NonZeroU16;
2395 /// use zerocopy::*;
2396 /// # use zerocopy_derive::*;
2397 ///
2398 /// #[derive(TryFromBytes, Immutable, KnownLayout)]
2399 /// #[repr(C)]
2400 /// struct ZSTy {
2401 /// leading_sized: NonZeroU16,
2402 /// trailing_dst: [()],
2403 /// }
2404 ///
2405 /// let src = 0xCAFEu16.as_bytes();
2406 /// let (_, zsty) = ZSTy::try_ref_from_suffix_with_elems(src, 42).unwrap();
2407 /// assert_eq!(zsty.trailing_dst.len(), 42);
2408 /// ```
2409 ///
2410 /// [`try_ref_from_prefix`]: TryFromBytes::try_ref_from_prefix
2411 #[must_use = "has no side effects"]
2412 #[inline]
2413 fn try_ref_from_suffix_with_elems(
2414 source: &[u8],
2415 count: usize,
2416 ) -> Result<(&[u8], &Self), TryCastError<&[u8], Self>>
2417 where
2418 Self: KnownLayout<PointerMetadata = usize> + Immutable,
2419 {
2420 try_ref_from_prefix_suffix(source, CastType::Suffix, Some(count)).map(swap)
2421 }
2422
2423 /// Attempts to interpret the given `source` as a `&mut Self` with a DST
2424 /// length equal to `count`.
2425 ///
2426 /// This method attempts to return a reference to `source` interpreted as a
2427 /// `Self` with `count` trailing elements. If the length of `source` is not
2428 /// equal to the size of `Self` with `count` elements, if `source` is not
2429 /// appropriately aligned, or if `source` does not contain a valid instance
2430 /// of `Self`, this returns `Err`. If [`Self: Unaligned`][self-unaligned],
2431 /// you can [infallibly discard the alignment error][ConvertError::from].
2432 ///
2433 /// [self-unaligned]: Unaligned
2434 /// [slice-dst]: KnownLayout#dynamically-sized-types
2435 ///
2436 /// # Examples
2437 ///
2438 /// ```
2439 /// # #![allow(non_camel_case_types)] // For C0::xC0
2440 /// use zerocopy::TryFromBytes;
2441 /// # use zerocopy_derive::*;
2442 ///
2443 /// // The only valid value of this type is the byte `0xC0`
2444 /// #[derive(TryFromBytes, IntoBytes, KnownLayout)]
2445 /// #[repr(u8)]
2446 /// enum C0 { xC0 = 0xC0 }
2447 ///
2448 /// // The only valid value of this type is the bytes `0xC0C0`.
2449 /// #[derive(TryFromBytes, IntoBytes, KnownLayout)]
2450 /// #[repr(C)]
2451 /// struct C0C0(C0, C0);
2452 ///
2453 /// #[derive(TryFromBytes, IntoBytes, KnownLayout)]
2454 /// #[repr(C, packed)]
2455 /// struct Packet {
2456 /// magic_number: C0C0,
2457 /// mug_size: u8,
2458 /// temperature: u8,
2459 /// marshmallows: [[u8; 2]],
2460 /// }
2461 ///
2462 /// let bytes = &mut [0xC0, 0xC0, 240, 77, 2, 3, 4, 5, 6, 7][..];
2463 ///
2464 /// let packet = Packet::try_mut_from_bytes_with_elems(bytes, 3).unwrap();
2465 ///
2466 /// assert_eq!(packet.mug_size, 240);
2467 /// assert_eq!(packet.temperature, 77);
2468 /// assert_eq!(packet.marshmallows, [[2, 3], [4, 5], [6, 7]]);
2469 ///
2470 /// packet.temperature = 111;
2471 ///
2472 /// assert_eq!(bytes, [0xC0, 0xC0, 240, 111, 2, 3, 4, 5, 6, 7]);
2473 ///
2474 /// // These bytes are not valid instance of `Packet`.
2475 /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 77, 240, 0xC0, 0xC0][..];
2476 /// assert!(Packet::try_mut_from_bytes_with_elems(bytes, 3).is_err());
2477 /// ```
2478 ///
2479 /// Since an explicit `count` is provided, this method supports types with
2480 /// zero-sized trailing slice elements. Methods such as [`try_mut_from_bytes`]
2481 /// which do not take an explicit count do not support such types.
2482 ///
2483 /// ```
2484 /// use core::num::NonZeroU16;
2485 /// use zerocopy::*;
2486 /// # use zerocopy_derive::*;
2487 ///
2488 /// #[derive(TryFromBytes, IntoBytes, KnownLayout)]
2489 /// #[repr(C, packed)]
2490 /// struct ZSTy {
2491 /// leading_sized: NonZeroU16,
2492 /// trailing_dst: [()],
2493 /// }
2494 ///
2495 /// let mut src = 0xCAFEu16;
2496 /// let src = src.as_mut_bytes();
2497 /// let zsty = ZSTy::try_mut_from_bytes_with_elems(src, 42).unwrap();
2498 /// assert_eq!(zsty.trailing_dst.len(), 42);
2499 /// ```
2500 ///
2501 /// [`try_mut_from_bytes`]: TryFromBytes::try_mut_from_bytes
2502 #[must_use = "has no side effects"]
2503 #[inline]
2504 fn try_mut_from_bytes_with_elems(
2505 source: &mut [u8],
2506 count: usize,
2507 ) -> Result<&mut Self, TryCastError<&mut [u8], Self>>
2508 where
2509 Self: KnownLayout<PointerMetadata = usize> + IntoBytes,
2510 {
2511 match Ptr::from_mut(source).try_cast_into_no_leftover::<Self, BecauseExclusive>(Some(count))
2512 {
2513 Ok(source) => {
2514 // This call may panic. If that happens, it doesn't cause any soundness
2515 // issues, as we have not generated any invalid state which we need to
2516 // fix before returning.
2517 //
2518 // Note that one panic or post-monomorphization error condition is
2519 // calling `try_into_valid` (and thus `is_bit_valid`) with a shared
2520 // pointer when `Self: !Immutable`. Since `Self: Immutable`, this panic
2521 // condition will not happen.
2522 match source.try_into_valid() {
2523 Ok(source) => Ok(source.as_mut()),
2524 Err(e) => {
2525 Err(e.map_src(|src| src.as_bytes::<BecauseExclusive>().as_mut()).into())
2526 }
2527 }
2528 }
2529 Err(e) => Err(e.map_src(Ptr::as_mut).into()),
2530 }
2531 }
2532
2533 /// Attempts to interpret the prefix of the given `source` as a `&mut Self`
2534 /// with a DST length equal to `count`.
2535 ///
2536 /// This method attempts to return a reference to the prefix of `source`
2537 /// interpreted as a `Self` with `count` trailing elements, and a reference
2538 /// to the remaining bytes. If the length of `source` is less than the size
2539 /// of `Self` with `count` elements, if `source` is not appropriately
2540 /// aligned, or if the prefix of `source` does not contain a valid instance
2541 /// of `Self`, this returns `Err`. If [`Self: Unaligned`][self-unaligned],
2542 /// you can [infallibly discard the alignment error][ConvertError::from].
2543 ///
2544 /// [self-unaligned]: Unaligned
2545 /// [slice-dst]: KnownLayout#dynamically-sized-types
2546 ///
2547 /// # Examples
2548 ///
2549 /// ```
2550 /// # #![allow(non_camel_case_types)] // For C0::xC0
2551 /// use zerocopy::TryFromBytes;
2552 /// # use zerocopy_derive::*;
2553 ///
2554 /// // The only valid value of this type is the byte `0xC0`
2555 /// #[derive(TryFromBytes, IntoBytes, KnownLayout)]
2556 /// #[repr(u8)]
2557 /// enum C0 { xC0 = 0xC0 }
2558 ///
2559 /// // The only valid value of this type is the bytes `0xC0C0`.
2560 /// #[derive(TryFromBytes, IntoBytes, KnownLayout)]
2561 /// #[repr(C)]
2562 /// struct C0C0(C0, C0);
2563 ///
2564 /// #[derive(TryFromBytes, IntoBytes, KnownLayout)]
2565 /// #[repr(C, packed)]
2566 /// struct Packet {
2567 /// magic_number: C0C0,
2568 /// mug_size: u8,
2569 /// temperature: u8,
2570 /// marshmallows: [[u8; 2]],
2571 /// }
2572 ///
2573 /// let bytes = &mut [0xC0, 0xC0, 240, 77, 2, 3, 4, 5, 6, 7, 8][..];
2574 ///
2575 /// let (packet, suffix) = Packet::try_mut_from_prefix_with_elems(bytes, 3).unwrap();
2576 ///
2577 /// assert_eq!(packet.mug_size, 240);
2578 /// assert_eq!(packet.temperature, 77);
2579 /// assert_eq!(packet.marshmallows, [[2, 3], [4, 5], [6, 7]]);
2580 /// assert_eq!(suffix, &[8u8][..]);
2581 ///
2582 /// packet.temperature = 111;
2583 /// suffix[0] = 222;
2584 ///
2585 /// assert_eq!(bytes, [0xC0, 0xC0, 240, 111, 2, 3, 4, 5, 6, 7, 222]);
2586 ///
2587 /// // These bytes are not valid instance of `Packet`.
2588 /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7, 8, 77, 240, 0xC0, 0xC0][..];
2589 /// assert!(Packet::try_mut_from_prefix_with_elems(bytes, 3).is_err());
2590 /// ```
2591 ///
2592 /// Since an explicit `count` is provided, this method supports types with
2593 /// zero-sized trailing slice elements. Methods such as [`try_mut_from_prefix`]
2594 /// which do not take an explicit count do not support such types.
2595 ///
2596 /// ```
2597 /// use core::num::NonZeroU16;
2598 /// use zerocopy::*;
2599 /// # use zerocopy_derive::*;
2600 ///
2601 /// #[derive(TryFromBytes, IntoBytes, KnownLayout)]
2602 /// #[repr(C, packed)]
2603 /// struct ZSTy {
2604 /// leading_sized: NonZeroU16,
2605 /// trailing_dst: [()],
2606 /// }
2607 ///
2608 /// let mut src = 0xCAFEu16;
2609 /// let src = src.as_mut_bytes();
2610 /// let (zsty, _) = ZSTy::try_mut_from_prefix_with_elems(src, 42).unwrap();
2611 /// assert_eq!(zsty.trailing_dst.len(), 42);
2612 /// ```
2613 ///
2614 /// [`try_mut_from_prefix`]: TryFromBytes::try_mut_from_prefix
2615 #[must_use = "has no side effects"]
2616 #[inline]
2617 fn try_mut_from_prefix_with_elems(
2618 source: &mut [u8],
2619 count: usize,
2620 ) -> Result<(&mut Self, &mut [u8]), TryCastError<&mut [u8], Self>>
2621 where
2622 Self: KnownLayout<PointerMetadata = usize> + IntoBytes,
2623 {
2624 try_mut_from_prefix_suffix(source, CastType::Prefix, Some(count))
2625 }
2626
2627 /// Attempts to interpret the suffix of the given `source` as a `&mut Self`
2628 /// with a DST length equal to `count`.
2629 ///
2630 /// This method attempts to return a reference to the suffix of `source`
2631 /// interpreted as a `Self` with `count` trailing elements, and a reference
2632 /// to the preceding bytes. If the length of `source` is less than the size
2633 /// of `Self` with `count` elements, if the suffix of `source` is not
2634 /// appropriately aligned, or if the suffix of `source` does not contain a
2635 /// valid instance of `Self`, this returns `Err`. If [`Self:
2636 /// Unaligned`][self-unaligned], you can [infallibly discard the alignment
2637 /// error][ConvertError::from].
2638 ///
2639 /// [self-unaligned]: Unaligned
2640 /// [slice-dst]: KnownLayout#dynamically-sized-types
2641 ///
2642 /// # Examples
2643 ///
2644 /// ```
2645 /// # #![allow(non_camel_case_types)] // For C0::xC0
2646 /// use zerocopy::TryFromBytes;
2647 /// # use zerocopy_derive::*;
2648 ///
2649 /// // The only valid value of this type is the byte `0xC0`
2650 /// #[derive(TryFromBytes, IntoBytes, KnownLayout)]
2651 /// #[repr(u8)]
2652 /// enum C0 { xC0 = 0xC0 }
2653 ///
2654 /// // The only valid value of this type is the bytes `0xC0C0`.
2655 /// #[derive(TryFromBytes, IntoBytes, KnownLayout)]
2656 /// #[repr(C)]
2657 /// struct C0C0(C0, C0);
2658 ///
2659 /// #[derive(TryFromBytes, IntoBytes, KnownLayout)]
2660 /// #[repr(C, packed)]
2661 /// struct Packet {
2662 /// magic_number: C0C0,
2663 /// mug_size: u8,
2664 /// temperature: u8,
2665 /// marshmallows: [[u8; 2]],
2666 /// }
2667 ///
2668 /// let bytes = &mut [123, 0xC0, 0xC0, 240, 77, 2, 3, 4, 5, 6, 7][..];
2669 ///
2670 /// let (prefix, packet) = Packet::try_mut_from_suffix_with_elems(bytes, 3).unwrap();
2671 ///
2672 /// assert_eq!(packet.mug_size, 240);
2673 /// assert_eq!(packet.temperature, 77);
2674 /// assert_eq!(packet.marshmallows, [[2, 3], [4, 5], [6, 7]]);
2675 /// assert_eq!(prefix, &[123u8][..]);
2676 ///
2677 /// prefix[0] = 111;
2678 /// packet.temperature = 222;
2679 ///
2680 /// assert_eq!(bytes, [111, 0xC0, 0xC0, 240, 222, 2, 3, 4, 5, 6, 7]);
2681 ///
2682 /// // These bytes are not valid instance of `Packet`.
2683 /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7, 8, 77, 240, 0xC0, 0xC0][..];
2684 /// assert!(Packet::try_mut_from_suffix_with_elems(bytes, 3).is_err());
2685 /// ```
2686 ///
2687 /// Since an explicit `count` is provided, this method supports types with
2688 /// zero-sized trailing slice elements. Methods such as [`try_mut_from_prefix`]
2689 /// which do not take an explicit count do not support such types.
2690 ///
2691 /// ```
2692 /// use core::num::NonZeroU16;
2693 /// use zerocopy::*;
2694 /// # use zerocopy_derive::*;
2695 ///
2696 /// #[derive(TryFromBytes, IntoBytes, KnownLayout)]
2697 /// #[repr(C, packed)]
2698 /// struct ZSTy {
2699 /// leading_sized: NonZeroU16,
2700 /// trailing_dst: [()],
2701 /// }
2702 ///
2703 /// let mut src = 0xCAFEu16;
2704 /// let src = src.as_mut_bytes();
2705 /// let (_, zsty) = ZSTy::try_mut_from_suffix_with_elems(src, 42).unwrap();
2706 /// assert_eq!(zsty.trailing_dst.len(), 42);
2707 /// ```
2708 ///
2709 /// [`try_mut_from_prefix`]: TryFromBytes::try_mut_from_prefix
2710 #[must_use = "has no side effects"]
2711 #[inline]
2712 fn try_mut_from_suffix_with_elems(
2713 source: &mut [u8],
2714 count: usize,
2715 ) -> Result<(&mut [u8], &mut Self), TryCastError<&mut [u8], Self>>
2716 where
2717 Self: KnownLayout<PointerMetadata = usize> + IntoBytes,
2718 {
2719 try_mut_from_prefix_suffix(source, CastType::Suffix, Some(count)).map(swap)
2720 }
2721
2722 /// Attempts to read the given `source` as a `Self`.
2723 ///
2724 /// If `source.len() != size_of::<Self>()` or the bytes are not a valid
2725 /// instance of `Self`, this returns `Err`.
2726 ///
2727 /// # Examples
2728 ///
2729 /// ```
2730 /// use zerocopy::TryFromBytes;
2731 /// # use zerocopy_derive::*;
2732 ///
2733 /// // The only valid value of this type is the byte `0xC0`
2734 /// #[derive(TryFromBytes)]
2735 /// #[repr(u8)]
2736 /// enum C0 { xC0 = 0xC0 }
2737 ///
2738 /// // The only valid value of this type is the bytes `0xC0C0`.
2739 /// #[derive(TryFromBytes)]
2740 /// #[repr(C)]
2741 /// struct C0C0(C0, C0);
2742 ///
2743 /// #[derive(TryFromBytes)]
2744 /// #[repr(C)]
2745 /// struct Packet {
2746 /// magic_number: C0C0,
2747 /// mug_size: u8,
2748 /// temperature: u8,
2749 /// }
2750 ///
2751 /// let bytes = &[0xC0, 0xC0, 240, 77][..];
2752 ///
2753 /// let packet = Packet::try_read_from_bytes(bytes).unwrap();
2754 ///
2755 /// assert_eq!(packet.mug_size, 240);
2756 /// assert_eq!(packet.temperature, 77);
2757 ///
2758 /// // These bytes are not valid instance of `Packet`.
2759 /// let bytes = &mut [0x10, 0xC0, 240, 77][..];
2760 /// assert!(Packet::try_read_from_bytes(bytes).is_err());
2761 /// ```
2762 #[must_use = "has no side effects"]
2763 #[inline]
2764 fn try_read_from_bytes(source: &[u8]) -> Result<Self, TryReadError<&[u8], Self>>
2765 where
2766 Self: Sized,
2767 {
2768 let candidate = match CoreMaybeUninit::<Self>::read_from_bytes(source) {
2769 Ok(candidate) => candidate,
2770 Err(e) => {
2771 return Err(TryReadError::Size(e.with_dst()));
2772 }
2773 };
2774 // SAFETY: `candidate` was copied from from `source: &[u8]`, so all of
2775 // its bytes are initialized.
2776 unsafe { try_read_from(source, candidate) }
2777 }
2778
2779 /// Attempts to read a `Self` from the prefix of the given `source`.
2780 ///
2781 /// This attempts to read a `Self` from the first `size_of::<Self>()` bytes
2782 /// of `source`, returning that `Self` and any remaining bytes. If
2783 /// `source.len() < size_of::<Self>()` or the bytes are not a valid instance
2784 /// of `Self`, it returns `Err`.
2785 ///
2786 /// # Examples
2787 ///
2788 /// ```
2789 /// use zerocopy::TryFromBytes;
2790 /// # use zerocopy_derive::*;
2791 ///
2792 /// // The only valid value of this type is the byte `0xC0`
2793 /// #[derive(TryFromBytes)]
2794 /// #[repr(u8)]
2795 /// enum C0 { xC0 = 0xC0 }
2796 ///
2797 /// // The only valid value of this type is the bytes `0xC0C0`.
2798 /// #[derive(TryFromBytes)]
2799 /// #[repr(C)]
2800 /// struct C0C0(C0, C0);
2801 ///
2802 /// #[derive(TryFromBytes)]
2803 /// #[repr(C)]
2804 /// struct Packet {
2805 /// magic_number: C0C0,
2806 /// mug_size: u8,
2807 /// temperature: u8,
2808 /// }
2809 ///
2810 /// // These are more bytes than are needed to encode a `Packet`.
2811 /// let bytes = &[0xC0, 0xC0, 240, 77, 0, 1, 2, 3, 4, 5, 6][..];
2812 ///
2813 /// let (packet, suffix) = Packet::try_read_from_prefix(bytes).unwrap();
2814 ///
2815 /// assert_eq!(packet.mug_size, 240);
2816 /// assert_eq!(packet.temperature, 77);
2817 /// assert_eq!(suffix, &[0u8, 1, 2, 3, 4, 5, 6][..]);
2818 ///
2819 /// // These bytes are not valid instance of `Packet`.
2820 /// let bytes = &[0x10, 0xC0, 240, 77, 0, 1, 2, 3, 4, 5, 6][..];
2821 /// assert!(Packet::try_read_from_prefix(bytes).is_err());
2822 /// ```
2823 #[must_use = "has no side effects"]
2824 #[inline]
2825 fn try_read_from_prefix(source: &[u8]) -> Result<(Self, &[u8]), TryReadError<&[u8], Self>>
2826 where
2827 Self: Sized,
2828 {
2829 let (candidate, suffix) = match CoreMaybeUninit::<Self>::read_from_prefix(source) {
2830 Ok(candidate) => candidate,
2831 Err(e) => {
2832 return Err(TryReadError::Size(e.with_dst()));
2833 }
2834 };
2835 // SAFETY: `candidate` was copied from from `source: &[u8]`, so all of
2836 // its bytes are initialized.
2837 unsafe { try_read_from(source, candidate).map(|slf| (slf, suffix)) }
2838 }
2839
2840 /// Attempts to read a `Self` from the suffix of the given `source`.
2841 ///
2842 /// This attempts to read a `Self` from the last `size_of::<Self>()` bytes
2843 /// of `source`, returning that `Self` and any preceding bytes. If
2844 /// `source.len() < size_of::<Self>()` or the bytes are not a valid instance
2845 /// of `Self`, it returns `Err`.
2846 ///
2847 /// # Examples
2848 ///
2849 /// ```
2850 /// # #![allow(non_camel_case_types)] // For C0::xC0
2851 /// use zerocopy::TryFromBytes;
2852 /// # use zerocopy_derive::*;
2853 ///
2854 /// // The only valid value of this type is the byte `0xC0`
2855 /// #[derive(TryFromBytes)]
2856 /// #[repr(u8)]
2857 /// enum C0 { xC0 = 0xC0 }
2858 ///
2859 /// // The only valid value of this type is the bytes `0xC0C0`.
2860 /// #[derive(TryFromBytes)]
2861 /// #[repr(C)]
2862 /// struct C0C0(C0, C0);
2863 ///
2864 /// #[derive(TryFromBytes)]
2865 /// #[repr(C)]
2866 /// struct Packet {
2867 /// magic_number: C0C0,
2868 /// mug_size: u8,
2869 /// temperature: u8,
2870 /// }
2871 ///
2872 /// // These are more bytes than are needed to encode a `Packet`.
2873 /// let bytes = &[0, 1, 2, 3, 4, 5, 0xC0, 0xC0, 240, 77][..];
2874 ///
2875 /// let (prefix, packet) = Packet::try_read_from_suffix(bytes).unwrap();
2876 ///
2877 /// assert_eq!(packet.mug_size, 240);
2878 /// assert_eq!(packet.temperature, 77);
2879 /// assert_eq!(prefix, &[0u8, 1, 2, 3, 4, 5][..]);
2880 ///
2881 /// // These bytes are not valid instance of `Packet`.
2882 /// let bytes = &[0, 1, 2, 3, 4, 5, 0x10, 0xC0, 240, 77][..];
2883 /// assert!(Packet::try_read_from_suffix(bytes).is_err());
2884 /// ```
2885 #[must_use = "has no side effects"]
2886 #[inline]
2887 fn try_read_from_suffix(source: &[u8]) -> Result<(&[u8], Self), TryReadError<&[u8], Self>>
2888 where
2889 Self: Sized,
2890 {
2891 let (prefix, candidate) = match CoreMaybeUninit::<Self>::read_from_suffix(source) {
2892 Ok(candidate) => candidate,
2893 Err(e) => {
2894 return Err(TryReadError::Size(e.with_dst()));
2895 }
2896 };
2897 // SAFETY: `candidate` was copied from from `source: &[u8]`, so all of
2898 // its bytes are initialized.
2899 unsafe { try_read_from(source, candidate).map(|slf| (prefix, slf)) }
2900 }
2901}
2902
2903#[inline(always)]
2904fn try_ref_from_prefix_suffix<T: TryFromBytes + KnownLayout + Immutable + ?Sized>(
2905 source: &[u8],
2906 cast_type: CastType,
2907 meta: Option<T::PointerMetadata>,
2908) -> Result<(&T, &[u8]), TryCastError<&[u8], T>> {
2909 match Ptr::from_ref(source).try_cast_into::<T, BecauseImmutable>(cast_type, meta) {
2910 Ok((source, prefix_suffix)) => {
2911 // This call may panic. If that happens, it doesn't cause any soundness
2912 // issues, as we have not generated any invalid state which we need to
2913 // fix before returning.
2914 //
2915 // Note that one panic or post-monomorphization error condition is
2916 // calling `try_into_valid` (and thus `is_bit_valid`) with a shared
2917 // pointer when `Self: !Immutable`. Since `Self: Immutable`, this panic
2918 // condition will not happen.
2919 match source.try_into_valid() {
2920 Ok(valid) => Ok((valid.as_ref(), prefix_suffix.as_ref())),
2921 Err(e) => Err(e.map_src(|src| src.as_bytes::<BecauseImmutable>().as_ref()).into()),
2922 }
2923 }
2924 Err(e) => Err(e.map_src(Ptr::as_ref).into()),
2925 }
2926}
2927
2928#[inline(always)]
2929fn try_mut_from_prefix_suffix<T: IntoBytes + TryFromBytes + KnownLayout + ?Sized>(
2930 candidate: &mut [u8],
2931 cast_type: CastType,
2932 meta: Option<T::PointerMetadata>,
2933) -> Result<(&mut T, &mut [u8]), TryCastError<&mut [u8], T>> {
2934 match Ptr::from_mut(candidate).try_cast_into::<T, BecauseExclusive>(cast_type, meta) {
2935 Ok((candidate, prefix_suffix)) => {
2936 // This call may panic. If that happens, it doesn't cause any soundness
2937 // issues, as we have not generated any invalid state which we need to
2938 // fix before returning.
2939 //
2940 // Note that one panic or post-monomorphization error condition is
2941 // calling `try_into_valid` (and thus `is_bit_valid`) with a shared
2942 // pointer when `Self: !Immutable`. Since `Self: Immutable`, this panic
2943 // condition will not happen.
2944 match candidate.try_into_valid() {
2945 Ok(valid) => Ok((valid.as_mut(), prefix_suffix.as_mut())),
2946 Err(e) => Err(e.map_src(|src| src.as_bytes::<BecauseExclusive>().as_mut()).into()),
2947 }
2948 }
2949 Err(e) => Err(e.map_src(Ptr::as_mut).into()),
2950 }
2951}
2952
2953#[inline(always)]
2954fn swap<T, U>((t, u): (T, U)) -> (U, T) {
2955 (u, t)
2956}
2957
2958/// # Safety
2959///
2960/// All bytes of `candidate` must be initialized.
2961#[inline(always)]
2962unsafe fn try_read_from<S, T: TryFromBytes>(
2963 source: S,
2964 mut candidate: CoreMaybeUninit<T>,
2965) -> Result<T, TryReadError<S, T>> {
2966 // We use `from_mut` despite not mutating via `c_ptr` so that we don't need
2967 // to add a `T: Immutable` bound.
2968 let c_ptr = Ptr::from_mut(&mut candidate);
2969 // SAFETY: `c_ptr` has no uninitialized sub-ranges because it derived from
2970 // `candidate`, which the caller promises is entirely initialized. Since
2971 // `candidate` is a `MaybeUninit`, it has no validity requirements, and so
2972 // no values written to an `Initialized` `c_ptr` can violate its validity.
2973 // Since `c_ptr` has `Exclusive` aliasing, no mutations may happen except
2974 // via `c_ptr` so long as it is live, so we don't need to worry about the
2975 // fact that `c_ptr` may have more restricted validity than `candidate`.
2976 let c_ptr = unsafe { c_ptr.assume_validity::<invariant::Initialized>() };
2977 let c_ptr = c_ptr.transmute();
2978
2979 // Since we don't have `T: KnownLayout`, we hack around that by using
2980 // `Wrapping<T>`, which implements `KnownLayout` even if `T` doesn't.
2981 //
2982 // This call may panic. If that happens, it doesn't cause any soundness
2983 // issues, as we have not generated any invalid state which we need to fix
2984 // before returning.
2985 //
2986 // Note that one panic or post-monomorphization error condition is calling
2987 // `try_into_valid` (and thus `is_bit_valid`) with a shared pointer when
2988 // `Self: !Immutable`. Since `Self: Immutable`, this panic condition will
2989 // not happen.
2990 if !Wrapping::<T>::is_bit_valid(c_ptr.forget_aligned()) {
2991 return Err(ValidityError::new(source).into());
2992 }
2993
2994 fn _assert_same_size_and_validity<T>()
2995 where
2996 Wrapping<T>: pointer::TransmuteFrom<T, invariant::Valid, invariant::Valid>,
2997 T: pointer::TransmuteFrom<Wrapping<T>, invariant::Valid, invariant::Valid>,
2998 {
2999 }
3000
3001 _assert_same_size_and_validity::<T>();
3002
3003 // SAFETY: We just validated that `candidate` contains a valid
3004 // `Wrapping<T>`, which has the same size and bit validity as `T`, as
3005 // guaranteed by the preceding type assertion.
3006 Ok(unsafe { candidate.assume_init() })
3007}
3008
3009/// Types for which a sequence of `0` bytes is a valid instance.
3010///
3011/// Any memory region of the appropriate length which is guaranteed to contain
3012/// only zero bytes can be viewed as any `FromZeros` type with no runtime
3013/// overhead. This is useful whenever memory is known to be in a zeroed state,
3014/// such memory returned from some allocation routines.
3015///
3016/// # Warning: Padding bytes
3017///
3018/// Note that, when a value is moved or copied, only the non-padding bytes of
3019/// that value are guaranteed to be preserved. It is unsound to assume that
3020/// values written to padding bytes are preserved after a move or copy. For more
3021/// details, see the [`FromBytes` docs][frombytes-warning-padding-bytes].
3022///
3023/// [frombytes-warning-padding-bytes]: FromBytes#warning-padding-bytes
3024///
3025/// # Implementation
3026///
3027/// **Do not implement this trait yourself!** Instead, use
3028/// [`#[derive(FromZeros)]`][derive]; e.g.:
3029///
3030/// ```
3031/// # use zerocopy_derive::{FromZeros, Immutable};
3032/// #[derive(FromZeros)]
3033/// struct MyStruct {
3034/// # /*
3035/// ...
3036/// # */
3037/// }
3038///
3039/// #[derive(FromZeros)]
3040/// #[repr(u8)]
3041/// enum MyEnum {
3042/// # Variant0,
3043/// # /*
3044/// ...
3045/// # */
3046/// }
3047///
3048/// #[derive(FromZeros, Immutable)]
3049/// union MyUnion {
3050/// # variant: u8,
3051/// # /*
3052/// ...
3053/// # */
3054/// }
3055/// ```
3056///
3057/// This derive performs a sophisticated, compile-time safety analysis to
3058/// determine whether a type is `FromZeros`.
3059///
3060/// # Safety
3061///
3062/// *This section describes what is required in order for `T: FromZeros`, and
3063/// what unsafe code may assume of such types. If you don't plan on implementing
3064/// `FromZeros` manually, and you don't plan on writing unsafe code that
3065/// operates on `FromZeros` types, then you don't need to read this section.*
3066///
3067/// If `T: FromZeros`, then unsafe code may assume that it is sound to produce a
3068/// `T` whose bytes are all initialized to zero. If a type is marked as
3069/// `FromZeros` which violates this contract, it may cause undefined behavior.
3070///
3071/// `#[derive(FromZeros)]` only permits [types which satisfy these
3072/// requirements][derive-analysis].
3073///
3074#[cfg_attr(
3075 feature = "derive",
3076 doc = "[derive]: zerocopy_derive::FromZeros",
3077 doc = "[derive-analysis]: zerocopy_derive::FromZeros#analysis"
3078)]
3079#[cfg_attr(
3080 not(feature = "derive"),
3081 doc = concat!("[derive]: https://docs.rs/zerocopy/", env!("CARGO_PKG_VERSION"), "/zerocopy/derive.FromZeros.html"),
3082 doc = concat!("[derive-analysis]: https://docs.rs/zerocopy/", env!("CARGO_PKG_VERSION"), "/zerocopy/derive.FromZeros.html#analysis"),
3083)]
3084#[cfg_attr(
3085 not(no_zerocopy_diagnostic_on_unimplemented_1_78_0),
3086 diagnostic::on_unimplemented(note = "Consider adding `#[derive(FromZeros)]` to `{Self}`")
3087)]
3088pub unsafe trait FromZeros: TryFromBytes {
3089 // The `Self: Sized` bound makes it so that `FromZeros` is still object
3090 // safe.
3091 #[doc(hidden)]
3092 fn only_derive_is_allowed_to_implement_this_trait()
3093 where
3094 Self: Sized;
3095
3096 /// Overwrites `self` with zeros.
3097 ///
3098 /// Sets every byte in `self` to 0. While this is similar to doing `*self =
3099 /// Self::new_zeroed()`, it differs in that `zero` does not semantically
3100 /// drop the current value and replace it with a new one — it simply
3101 /// modifies the bytes of the existing value.
3102 ///
3103 /// # Examples
3104 ///
3105 /// ```
3106 /// # use zerocopy::FromZeros;
3107 /// # use zerocopy_derive::*;
3108 /// #
3109 /// #[derive(FromZeros)]
3110 /// #[repr(C)]
3111 /// struct PacketHeader {
3112 /// src_port: [u8; 2],
3113 /// dst_port: [u8; 2],
3114 /// length: [u8; 2],
3115 /// checksum: [u8; 2],
3116 /// }
3117 ///
3118 /// let mut header = PacketHeader {
3119 /// src_port: 100u16.to_be_bytes(),
3120 /// dst_port: 200u16.to_be_bytes(),
3121 /// length: 300u16.to_be_bytes(),
3122 /// checksum: 400u16.to_be_bytes(),
3123 /// };
3124 ///
3125 /// header.zero();
3126 ///
3127 /// assert_eq!(header.src_port, [0, 0]);
3128 /// assert_eq!(header.dst_port, [0, 0]);
3129 /// assert_eq!(header.length, [0, 0]);
3130 /// assert_eq!(header.checksum, [0, 0]);
3131 /// ```
3132 #[inline(always)]
3133 fn zero(&mut self) {
3134 let slf: *mut Self = self;
3135 let len = mem::size_of_val(self);
3136 // SAFETY:
3137 // - `self` is guaranteed by the type system to be valid for writes of
3138 // size `size_of_val(self)`.
3139 // - `u8`'s alignment is 1, and thus `self` is guaranteed to be aligned
3140 // as required by `u8`.
3141 // - Since `Self: FromZeros`, the all-zeros instance is a valid instance
3142 // of `Self.`
3143 //
3144 // FIXME(#429): Add references to docs and quotes.
3145 unsafe { ptr::write_bytes(slf.cast::<u8>(), 0, len) };
3146 }
3147
3148 /// Creates an instance of `Self` from zeroed bytes.
3149 ///
3150 /// # Examples
3151 ///
3152 /// ```
3153 /// # use zerocopy::FromZeros;
3154 /// # use zerocopy_derive::*;
3155 /// #
3156 /// #[derive(FromZeros)]
3157 /// #[repr(C)]
3158 /// struct PacketHeader {
3159 /// src_port: [u8; 2],
3160 /// dst_port: [u8; 2],
3161 /// length: [u8; 2],
3162 /// checksum: [u8; 2],
3163 /// }
3164 ///
3165 /// let header: PacketHeader = FromZeros::new_zeroed();
3166 ///
3167 /// assert_eq!(header.src_port, [0, 0]);
3168 /// assert_eq!(header.dst_port, [0, 0]);
3169 /// assert_eq!(header.length, [0, 0]);
3170 /// assert_eq!(header.checksum, [0, 0]);
3171 /// ```
3172 #[must_use = "has no side effects"]
3173 #[inline(always)]
3174 fn new_zeroed() -> Self
3175 where
3176 Self: Sized,
3177 {
3178 // SAFETY: `FromZeros` says that the all-zeros bit pattern is legal.
3179 unsafe { mem::zeroed() }
3180 }
3181
3182 /// Creates a `Box<Self>` from zeroed bytes.
3183 ///
3184 /// This function is useful for allocating large values on the heap and
3185 /// zero-initializing them, without ever creating a temporary instance of
3186 /// `Self` on the stack. For example, `<[u8; 1048576]>::new_box_zeroed()`
3187 /// will allocate `[u8; 1048576]` directly on the heap; it does not require
3188 /// storing `[u8; 1048576]` in a temporary variable on the stack.
3189 ///
3190 /// On systems that use a heap implementation that supports allocating from
3191 /// pre-zeroed memory, using `new_box_zeroed` (or related functions) may
3192 /// have performance benefits.
3193 ///
3194 /// # Errors
3195 ///
3196 /// Returns an error on allocation failure. Allocation failure is guaranteed
3197 /// never to cause a panic or an abort.
3198 #[must_use = "has no side effects (other than allocation)"]
3199 #[cfg(any(feature = "alloc", test))]
3200 #[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
3201 #[inline]
3202 fn new_box_zeroed() -> Result<Box<Self>, AllocError>
3203 where
3204 Self: Sized,
3205 {
3206 // If `T` is a ZST, then return a proper boxed instance of it. There is
3207 // no allocation, but `Box` does require a correct dangling pointer.
3208 let layout = Layout::new::<Self>();
3209 if layout.size() == 0 {
3210 // Construct the `Box` from a dangling pointer to avoid calling
3211 // `Self::new_zeroed`. This ensures that stack space is never
3212 // allocated for `Self` even on lower opt-levels where this branch
3213 // might not get optimized out.
3214
3215 // SAFETY: Per [1], when `T` is a ZST, `Box<T>`'s only validity
3216 // requirements are that the pointer is non-null and sufficiently
3217 // aligned. Per [2], `NonNull::dangling` produces a pointer which
3218 // is sufficiently aligned. Since the produced pointer is a
3219 // `NonNull`, it is non-null.
3220 //
3221 // [1] Per https://doc.rust-lang.org/1.81.0/std/boxed/index.html#memory-layout:
3222 //
3223 // For zero-sized values, the `Box` pointer has to be non-null and sufficiently aligned.
3224 //
3225 // [2] Per https://doc.rust-lang.org/std/ptr/struct.NonNull.html#method.dangling:
3226 //
3227 // Creates a new `NonNull` that is dangling, but well-aligned.
3228 return Ok(unsafe { Box::from_raw(NonNull::dangling().as_ptr()) });
3229 }
3230
3231 // FIXME(#429): Add a "SAFETY" comment and remove this `allow`.
3232 #[allow(clippy::undocumented_unsafe_blocks)]
3233 let ptr = unsafe { alloc::alloc::alloc_zeroed(layout).cast::<Self>() };
3234 if ptr.is_null() {
3235 return Err(AllocError);
3236 }
3237 // FIXME(#429): Add a "SAFETY" comment and remove this `allow`.
3238 #[allow(clippy::undocumented_unsafe_blocks)]
3239 Ok(unsafe { Box::from_raw(ptr) })
3240 }
3241
3242 /// Creates a `Box<[Self]>` (a boxed slice) from zeroed bytes.
3243 ///
3244 /// This function is useful for allocating large values of `[Self]` on the
3245 /// heap and zero-initializing them, without ever creating a temporary
3246 /// instance of `[Self; _]` on the stack. For example,
3247 /// `u8::new_box_slice_zeroed(1048576)` will allocate the slice directly on
3248 /// the heap; it does not require storing the slice on the stack.
3249 ///
3250 /// On systems that use a heap implementation that supports allocating from
3251 /// pre-zeroed memory, using `new_box_slice_zeroed` may have performance
3252 /// benefits.
3253 ///
3254 /// If `Self` is a zero-sized type, then this function will return a
3255 /// `Box<[Self]>` that has the correct `len`. Such a box cannot contain any
3256 /// actual information, but its `len()` property will report the correct
3257 /// value.
3258 ///
3259 /// # Errors
3260 ///
3261 /// Returns an error on allocation failure. Allocation failure is
3262 /// guaranteed never to cause a panic or an abort.
3263 #[must_use = "has no side effects (other than allocation)"]
3264 #[cfg(feature = "alloc")]
3265 #[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
3266 #[inline]
3267 fn new_box_zeroed_with_elems(count: usize) -> Result<Box<Self>, AllocError>
3268 where
3269 Self: KnownLayout<PointerMetadata = usize>,
3270 {
3271 // SAFETY: `alloc::alloc::alloc_zeroed` is a valid argument of
3272 // `new_box`. The referent of the pointer returned by `alloc_zeroed`
3273 // (and, consequently, the `Box` derived from it) is a valid instance of
3274 // `Self`, because `Self` is `FromZeros`.
3275 unsafe { crate::util::new_box(count, alloc::alloc::alloc_zeroed) }
3276 }
3277
3278 #[deprecated(since = "0.8.0", note = "renamed to `FromZeros::new_box_zeroed_with_elems`")]
3279 #[doc(hidden)]
3280 #[cfg(feature = "alloc")]
3281 #[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
3282 #[must_use = "has no side effects (other than allocation)"]
3283 #[inline(always)]
3284 fn new_box_slice_zeroed(len: usize) -> Result<Box<[Self]>, AllocError>
3285 where
3286 Self: Sized,
3287 {
3288 <[Self]>::new_box_zeroed_with_elems(len)
3289 }
3290
3291 /// Creates a `Vec<Self>` from zeroed bytes.
3292 ///
3293 /// This function is useful for allocating large values of `Vec`s and
3294 /// zero-initializing them, without ever creating a temporary instance of
3295 /// `[Self; _]` (or many temporary instances of `Self`) on the stack. For
3296 /// example, `u8::new_vec_zeroed(1048576)` will allocate directly on the
3297 /// heap; it does not require storing intermediate values on the stack.
3298 ///
3299 /// On systems that use a heap implementation that supports allocating from
3300 /// pre-zeroed memory, using `new_vec_zeroed` may have performance benefits.
3301 ///
3302 /// If `Self` is a zero-sized type, then this function will return a
3303 /// `Vec<Self>` that has the correct `len`. Such a `Vec` cannot contain any
3304 /// actual information, but its `len()` property will report the correct
3305 /// value.
3306 ///
3307 /// # Errors
3308 ///
3309 /// Returns an error on allocation failure. Allocation failure is
3310 /// guaranteed never to cause a panic or an abort.
3311 #[must_use = "has no side effects (other than allocation)"]
3312 #[cfg(feature = "alloc")]
3313 #[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
3314 #[inline(always)]
3315 fn new_vec_zeroed(len: usize) -> Result<Vec<Self>, AllocError>
3316 where
3317 Self: Sized,
3318 {
3319 <[Self]>::new_box_zeroed_with_elems(len).map(Into::into)
3320 }
3321
3322 /// Extends a `Vec<Self>` by pushing `additional` new items onto the end of
3323 /// the vector. The new items are initialized with zeros.
3324 #[cfg(not(no_zerocopy_panic_in_const_and_vec_try_reserve_1_57_0))]
3325 #[cfg(feature = "alloc")]
3326 #[cfg_attr(doc_cfg, doc(cfg(all(rust = "1.57.0", feature = "alloc"))))]
3327 #[inline(always)]
3328 fn extend_vec_zeroed(v: &mut Vec<Self>, additional: usize) -> Result<(), AllocError>
3329 where
3330 Self: Sized,
3331 {
3332 // PANICS: We pass `v.len()` for `position`, so the `position > v.len()`
3333 // panic condition is not satisfied.
3334 <Self as FromZeros>::insert_vec_zeroed(v, v.len(), additional)
3335 }
3336
3337 /// Inserts `additional` new items into `Vec<Self>` at `position`. The new
3338 /// items are initialized with zeros.
3339 ///
3340 /// # Panics
3341 ///
3342 /// Panics if `position > v.len()`.
3343 #[cfg(not(no_zerocopy_panic_in_const_and_vec_try_reserve_1_57_0))]
3344 #[cfg(feature = "alloc")]
3345 #[cfg_attr(doc_cfg, doc(cfg(all(rust = "1.57.0", feature = "alloc"))))]
3346 #[inline]
3347 fn insert_vec_zeroed(
3348 v: &mut Vec<Self>,
3349 position: usize,
3350 additional: usize,
3351 ) -> Result<(), AllocError>
3352 where
3353 Self: Sized,
3354 {
3355 assert!(position <= v.len());
3356 // We only conditionally compile on versions on which `try_reserve` is
3357 // stable; the Clippy lint is a false positive.
3358 v.try_reserve(additional).map_err(|_| AllocError)?;
3359 // SAFETY: The `try_reserve` call guarantees that these cannot overflow:
3360 // * `ptr.add(position)`
3361 // * `position + additional`
3362 // * `v.len() + additional`
3363 //
3364 // `v.len() - position` cannot overflow because we asserted that
3365 // `position <= v.len()`.
3366 #[allow(clippy::multiple_unsafe_ops_per_block)]
3367 unsafe {
3368 // This is a potentially overlapping copy.
3369 let ptr = v.as_mut_ptr();
3370 #[allow(clippy::arithmetic_side_effects)]
3371 ptr.add(position).copy_to(ptr.add(position + additional), v.len() - position);
3372 ptr.add(position).write_bytes(0, additional);
3373 #[allow(clippy::arithmetic_side_effects)]
3374 v.set_len(v.len() + additional);
3375 }
3376
3377 Ok(())
3378 }
3379}
3380
3381/// Analyzes whether a type is [`FromBytes`].
3382///
3383/// This derive analyzes, at compile time, whether the annotated type satisfies
3384/// the [safety conditions] of `FromBytes` and implements `FromBytes` and its
3385/// supertraits if it is sound to do so. This derive can be applied to structs,
3386/// enums, and unions;
3387/// e.g.:
3388///
3389/// ```
3390/// # use zerocopy_derive::{FromBytes, FromZeros, Immutable};
3391/// #[derive(FromBytes)]
3392/// struct MyStruct {
3393/// # /*
3394/// ...
3395/// # */
3396/// }
3397///
3398/// #[derive(FromBytes)]
3399/// #[repr(u8)]
3400/// enum MyEnum {
3401/// # V00, V01, V02, V03, V04, V05, V06, V07, V08, V09, V0A, V0B, V0C, V0D, V0E,
3402/// # V0F, V10, V11, V12, V13, V14, V15, V16, V17, V18, V19, V1A, V1B, V1C, V1D,
3403/// # V1E, V1F, V20, V21, V22, V23, V24, V25, V26, V27, V28, V29, V2A, V2B, V2C,
3404/// # V2D, V2E, V2F, V30, V31, V32, V33, V34, V35, V36, V37, V38, V39, V3A, V3B,
3405/// # V3C, V3D, V3E, V3F, V40, V41, V42, V43, V44, V45, V46, V47, V48, V49, V4A,
3406/// # V4B, V4C, V4D, V4E, V4F, V50, V51, V52, V53, V54, V55, V56, V57, V58, V59,
3407/// # V5A, V5B, V5C, V5D, V5E, V5F, V60, V61, V62, V63, V64, V65, V66, V67, V68,
3408/// # V69, V6A, V6B, V6C, V6D, V6E, V6F, V70, V71, V72, V73, V74, V75, V76, V77,
3409/// # V78, V79, V7A, V7B, V7C, V7D, V7E, V7F, V80, V81, V82, V83, V84, V85, V86,
3410/// # V87, V88, V89, V8A, V8B, V8C, V8D, V8E, V8F, V90, V91, V92, V93, V94, V95,
3411/// # V96, V97, V98, V99, V9A, V9B, V9C, V9D, V9E, V9F, VA0, VA1, VA2, VA3, VA4,
3412/// # VA5, VA6, VA7, VA8, VA9, VAA, VAB, VAC, VAD, VAE, VAF, VB0, VB1, VB2, VB3,
3413/// # VB4, VB5, VB6, VB7, VB8, VB9, VBA, VBB, VBC, VBD, VBE, VBF, VC0, VC1, VC2,
3414/// # VC3, VC4, VC5, VC6, VC7, VC8, VC9, VCA, VCB, VCC, VCD, VCE, VCF, VD0, VD1,
3415/// # VD2, VD3, VD4, VD5, VD6, VD7, VD8, VD9, VDA, VDB, VDC, VDD, VDE, VDF, VE0,
3416/// # VE1, VE2, VE3, VE4, VE5, VE6, VE7, VE8, VE9, VEA, VEB, VEC, VED, VEE, VEF,
3417/// # VF0, VF1, VF2, VF3, VF4, VF5, VF6, VF7, VF8, VF9, VFA, VFB, VFC, VFD, VFE,
3418/// # VFF,
3419/// # /*
3420/// ...
3421/// # */
3422/// }
3423///
3424/// #[derive(FromBytes, Immutable)]
3425/// union MyUnion {
3426/// # variant: u8,
3427/// # /*
3428/// ...
3429/// # */
3430/// }
3431/// ```
3432///
3433/// [safety conditions]: trait@FromBytes#safety
3434///
3435/// # Analysis
3436///
3437/// *This section describes, roughly, the analysis performed by this derive to
3438/// determine whether it is sound to implement `FromBytes` for a given type.
3439/// Unless you are modifying the implementation of this derive, or attempting to
3440/// manually implement `FromBytes` for a type yourself, you don't need to read
3441/// this section.*
3442///
3443/// If a type has the following properties, then this derive can implement
3444/// `FromBytes` for that type:
3445///
3446/// - If the type is a struct, all of its fields must be `FromBytes`.
3447/// - If the type is an enum:
3448/// - It must have a defined representation which is one of `u8`, `u16`, `i8`,
3449/// or `i16`.
3450/// - The maximum number of discriminants must be used (so that every possible
3451/// bit pattern is a valid one).
3452/// - Its fields must be `FromBytes`.
3453///
3454/// This analysis is subject to change. Unsafe code may *only* rely on the
3455/// documented [safety conditions] of `FromBytes`, and must *not* rely on the
3456/// implementation details of this derive.
3457///
3458/// ## Why isn't an explicit representation required for structs?
3459///
3460/// Neither this derive, nor the [safety conditions] of `FromBytes`, requires
3461/// that structs are marked with `#[repr(C)]`.
3462///
3463/// Per the [Rust reference](reference),
3464///
3465/// > The representation of a type can change the padding between fields, but
3466/// > does not change the layout of the fields themselves.
3467///
3468/// [reference]: https://doc.rust-lang.org/reference/type-layout.html#representations
3469///
3470/// Since the layout of structs only consists of padding bytes and field bytes,
3471/// a struct is soundly `FromBytes` if:
3472/// 1. its padding is soundly `FromBytes`, and
3473/// 2. its fields are soundly `FromBytes`.
3474///
3475/// The answer to the first question is always yes: padding bytes do not have
3476/// any validity constraints. A [discussion] of this question in the Unsafe Code
3477/// Guidelines Working Group concluded that it would be virtually unimaginable
3478/// for future versions of rustc to add validity constraints to padding bytes.
3479///
3480/// [discussion]: https://github.com/rust-lang/unsafe-code-guidelines/issues/174
3481///
3482/// Whether a struct is soundly `FromBytes` therefore solely depends on whether
3483/// its fields are `FromBytes`.
3484#[cfg(any(feature = "derive", test))]
3485#[cfg_attr(doc_cfg, doc(cfg(feature = "derive")))]
3486pub use zerocopy_derive::FromBytes;
3487
3488/// Types for which any bit pattern is valid.
3489///
3490/// Any memory region of the appropriate length which contains initialized bytes
3491/// can be viewed as any `FromBytes` type with no runtime overhead. This is
3492/// useful for efficiently parsing bytes as structured data.
3493///
3494/// # Warning: Padding bytes
3495///
3496/// Note that, when a value is moved or copied, only the non-padding bytes of
3497/// that value are guaranteed to be preserved. It is unsound to assume that
3498/// values written to padding bytes are preserved after a move or copy. For
3499/// example, the following is unsound:
3500///
3501/// ```rust,no_run
3502/// use core::mem::{size_of, transmute};
3503/// use zerocopy::FromZeros;
3504/// # use zerocopy_derive::*;
3505///
3506/// // Assume `Foo` is a type with padding bytes.
3507/// #[derive(FromZeros, Default)]
3508/// struct Foo {
3509/// # /*
3510/// ...
3511/// # */
3512/// }
3513///
3514/// let mut foo: Foo = Foo::default();
3515/// FromZeros::zero(&mut foo);
3516/// // UNSOUND: Although `FromZeros::zero` writes zeros to all bytes of `foo`,
3517/// // those writes are not guaranteed to be preserved in padding bytes when
3518/// // `foo` is moved, so this may expose padding bytes as `u8`s.
3519/// let foo_bytes: [u8; size_of::<Foo>()] = unsafe { transmute(foo) };
3520/// ```
3521///
3522/// # Implementation
3523///
3524/// **Do not implement this trait yourself!** Instead, use
3525/// [`#[derive(FromBytes)]`][derive]; e.g.:
3526///
3527/// ```
3528/// # use zerocopy_derive::{FromBytes, Immutable};
3529/// #[derive(FromBytes)]
3530/// struct MyStruct {
3531/// # /*
3532/// ...
3533/// # */
3534/// }
3535///
3536/// #[derive(FromBytes)]
3537/// #[repr(u8)]
3538/// enum MyEnum {
3539/// # V00, V01, V02, V03, V04, V05, V06, V07, V08, V09, V0A, V0B, V0C, V0D, V0E,
3540/// # V0F, V10, V11, V12, V13, V14, V15, V16, V17, V18, V19, V1A, V1B, V1C, V1D,
3541/// # V1E, V1F, V20, V21, V22, V23, V24, V25, V26, V27, V28, V29, V2A, V2B, V2C,
3542/// # V2D, V2E, V2F, V30, V31, V32, V33, V34, V35, V36, V37, V38, V39, V3A, V3B,
3543/// # V3C, V3D, V3E, V3F, V40, V41, V42, V43, V44, V45, V46, V47, V48, V49, V4A,
3544/// # V4B, V4C, V4D, V4E, V4F, V50, V51, V52, V53, V54, V55, V56, V57, V58, V59,
3545/// # V5A, V5B, V5C, V5D, V5E, V5F, V60, V61, V62, V63, V64, V65, V66, V67, V68,
3546/// # V69, V6A, V6B, V6C, V6D, V6E, V6F, V70, V71, V72, V73, V74, V75, V76, V77,
3547/// # V78, V79, V7A, V7B, V7C, V7D, V7E, V7F, V80, V81, V82, V83, V84, V85, V86,
3548/// # V87, V88, V89, V8A, V8B, V8C, V8D, V8E, V8F, V90, V91, V92, V93, V94, V95,
3549/// # V96, V97, V98, V99, V9A, V9B, V9C, V9D, V9E, V9F, VA0, VA1, VA2, VA3, VA4,
3550/// # VA5, VA6, VA7, VA8, VA9, VAA, VAB, VAC, VAD, VAE, VAF, VB0, VB1, VB2, VB3,
3551/// # VB4, VB5, VB6, VB7, VB8, VB9, VBA, VBB, VBC, VBD, VBE, VBF, VC0, VC1, VC2,
3552/// # VC3, VC4, VC5, VC6, VC7, VC8, VC9, VCA, VCB, VCC, VCD, VCE, VCF, VD0, VD1,
3553/// # VD2, VD3, VD4, VD5, VD6, VD7, VD8, VD9, VDA, VDB, VDC, VDD, VDE, VDF, VE0,
3554/// # VE1, VE2, VE3, VE4, VE5, VE6, VE7, VE8, VE9, VEA, VEB, VEC, VED, VEE, VEF,
3555/// # VF0, VF1, VF2, VF3, VF4, VF5, VF6, VF7, VF8, VF9, VFA, VFB, VFC, VFD, VFE,
3556/// # VFF,
3557/// # /*
3558/// ...
3559/// # */
3560/// }
3561///
3562/// #[derive(FromBytes, Immutable)]
3563/// union MyUnion {
3564/// # variant: u8,
3565/// # /*
3566/// ...
3567/// # */
3568/// }
3569/// ```
3570///
3571/// This derive performs a sophisticated, compile-time safety analysis to
3572/// determine whether a type is `FromBytes`.
3573///
3574/// # Safety
3575///
3576/// *This section describes what is required in order for `T: FromBytes`, and
3577/// what unsafe code may assume of such types. If you don't plan on implementing
3578/// `FromBytes` manually, and you don't plan on writing unsafe code that
3579/// operates on `FromBytes` types, then you don't need to read this section.*
3580///
3581/// If `T: FromBytes`, then unsafe code may assume that it is sound to produce a
3582/// `T` whose bytes are initialized to any sequence of valid `u8`s (in other
3583/// words, any byte value which is not uninitialized). If a type is marked as
3584/// `FromBytes` which violates this contract, it may cause undefined behavior.
3585///
3586/// `#[derive(FromBytes)]` only permits [types which satisfy these
3587/// requirements][derive-analysis].
3588///
3589#[cfg_attr(
3590 feature = "derive",
3591 doc = "[derive]: zerocopy_derive::FromBytes",
3592 doc = "[derive-analysis]: zerocopy_derive::FromBytes#analysis"
3593)]
3594#[cfg_attr(
3595 not(feature = "derive"),
3596 doc = concat!("[derive]: https://docs.rs/zerocopy/", env!("CARGO_PKG_VERSION"), "/zerocopy/derive.FromBytes.html"),
3597 doc = concat!("[derive-analysis]: https://docs.rs/zerocopy/", env!("CARGO_PKG_VERSION"), "/zerocopy/derive.FromBytes.html#analysis"),
3598)]
3599#[cfg_attr(
3600 not(no_zerocopy_diagnostic_on_unimplemented_1_78_0),
3601 diagnostic::on_unimplemented(note = "Consider adding `#[derive(FromBytes)]` to `{Self}`")
3602)]
3603pub unsafe trait FromBytes: FromZeros {
3604 // The `Self: Sized` bound makes it so that `FromBytes` is still object
3605 // safe.
3606 #[doc(hidden)]
3607 fn only_derive_is_allowed_to_implement_this_trait()
3608 where
3609 Self: Sized;
3610
3611 /// Interprets the given `source` as a `&Self`.
3612 ///
3613 /// This method attempts to return a reference to `source` interpreted as a
3614 /// `Self`. If the length of `source` is not a [valid size of
3615 /// `Self`][valid-size], or if `source` is not appropriately aligned, this
3616 /// returns `Err`. If [`Self: Unaligned`][self-unaligned], you can
3617 /// [infallibly discard the alignment error][size-error-from].
3618 ///
3619 /// `Self` may be a sized type, a slice, or a [slice DST][slice-dst].
3620 ///
3621 /// [valid-size]: crate::KnownLayout#what-is-a-valid-size
3622 /// [self-unaligned]: Unaligned
3623 /// [size-error-from]: error/struct.SizeError.html#method.from-1
3624 /// [slice-dst]: KnownLayout#dynamically-sized-types
3625 ///
3626 /// # Compile-Time Assertions
3627 ///
3628 /// This method cannot yet be used on unsized types whose dynamically-sized
3629 /// component is zero-sized. Attempting to use this method on such types
3630 /// results in a compile-time assertion error; e.g.:
3631 ///
3632 /// ```compile_fail,E0080
3633 /// use zerocopy::*;
3634 /// # use zerocopy_derive::*;
3635 ///
3636 /// #[derive(FromBytes, Immutable, KnownLayout)]
3637 /// #[repr(C)]
3638 /// struct ZSTy {
3639 /// leading_sized: u16,
3640 /// trailing_dst: [()],
3641 /// }
3642 ///
3643 /// let _ = ZSTy::ref_from_bytes(0u16.as_bytes()); // âš Compile Error!
3644 /// ```
3645 ///
3646 /// # Examples
3647 ///
3648 /// ```
3649 /// use zerocopy::FromBytes;
3650 /// # use zerocopy_derive::*;
3651 ///
3652 /// #[derive(FromBytes, KnownLayout, Immutable)]
3653 /// #[repr(C)]
3654 /// struct PacketHeader {
3655 /// src_port: [u8; 2],
3656 /// dst_port: [u8; 2],
3657 /// length: [u8; 2],
3658 /// checksum: [u8; 2],
3659 /// }
3660 ///
3661 /// #[derive(FromBytes, KnownLayout, Immutable)]
3662 /// #[repr(C)]
3663 /// struct Packet {
3664 /// header: PacketHeader,
3665 /// body: [u8],
3666 /// }
3667 ///
3668 /// // These bytes encode a `Packet`.
3669 /// let bytes = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11][..];
3670 ///
3671 /// let packet = Packet::ref_from_bytes(bytes).unwrap();
3672 ///
3673 /// assert_eq!(packet.header.src_port, [0, 1]);
3674 /// assert_eq!(packet.header.dst_port, [2, 3]);
3675 /// assert_eq!(packet.header.length, [4, 5]);
3676 /// assert_eq!(packet.header.checksum, [6, 7]);
3677 /// assert_eq!(packet.body, [8, 9, 10, 11]);
3678 /// ```
3679 #[must_use = "has no side effects"]
3680 #[inline]
3681 fn ref_from_bytes(source: &[u8]) -> Result<&Self, CastError<&[u8], Self>>
3682 where
3683 Self: KnownLayout + Immutable,
3684 {
3685 static_assert_dst_is_not_zst!(Self);
3686 match Ptr::from_ref(source).try_cast_into_no_leftover::<_, BecauseImmutable>(None) {
3687 Ok(ptr) => Ok(ptr.recall_validity().as_ref()),
3688 Err(err) => Err(err.map_src(|src| src.as_ref())),
3689 }
3690 }
3691
3692 /// Interprets the prefix of the given `source` as a `&Self` without
3693 /// copying.
3694 ///
3695 /// This method computes the [largest possible size of `Self`][valid-size]
3696 /// that can fit in the leading bytes of `source`, then attempts to return
3697 /// both a reference to those bytes interpreted as a `Self`, and a reference
3698 /// to the remaining bytes. If there are insufficient bytes, or if `source`
3699 /// is not appropriately aligned, this returns `Err`. If [`Self:
3700 /// Unaligned`][self-unaligned], you can [infallibly discard the alignment
3701 /// error][size-error-from].
3702 ///
3703 /// `Self` may be a sized type, a slice, or a [slice DST][slice-dst].
3704 ///
3705 /// [valid-size]: crate::KnownLayout#what-is-a-valid-size
3706 /// [self-unaligned]: Unaligned
3707 /// [size-error-from]: error/struct.SizeError.html#method.from-1
3708 /// [slice-dst]: KnownLayout#dynamically-sized-types
3709 ///
3710 /// # Compile-Time Assertions
3711 ///
3712 /// This method cannot yet be used on unsized types whose dynamically-sized
3713 /// component is zero-sized. See [`ref_from_prefix_with_elems`], which does
3714 /// support such types. Attempting to use this method on such types results
3715 /// in a compile-time assertion error; e.g.:
3716 ///
3717 /// ```compile_fail,E0080
3718 /// use zerocopy::*;
3719 /// # use zerocopy_derive::*;
3720 ///
3721 /// #[derive(FromBytes, Immutable, KnownLayout)]
3722 /// #[repr(C)]
3723 /// struct ZSTy {
3724 /// leading_sized: u16,
3725 /// trailing_dst: [()],
3726 /// }
3727 ///
3728 /// let _ = ZSTy::ref_from_prefix(0u16.as_bytes()); // âš Compile Error!
3729 /// ```
3730 ///
3731 /// [`ref_from_prefix_with_elems`]: FromBytes::ref_from_prefix_with_elems
3732 ///
3733 /// # Examples
3734 ///
3735 /// ```
3736 /// use zerocopy::FromBytes;
3737 /// # use zerocopy_derive::*;
3738 ///
3739 /// #[derive(FromBytes, KnownLayout, Immutable)]
3740 /// #[repr(C)]
3741 /// struct PacketHeader {
3742 /// src_port: [u8; 2],
3743 /// dst_port: [u8; 2],
3744 /// length: [u8; 2],
3745 /// checksum: [u8; 2],
3746 /// }
3747 ///
3748 /// #[derive(FromBytes, KnownLayout, Immutable)]
3749 /// #[repr(C)]
3750 /// struct Packet {
3751 /// header: PacketHeader,
3752 /// body: [[u8; 2]],
3753 /// }
3754 ///
3755 /// // These are more bytes than are needed to encode a `Packet`.
3756 /// let bytes = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14][..];
3757 ///
3758 /// let (packet, suffix) = Packet::ref_from_prefix(bytes).unwrap();
3759 ///
3760 /// assert_eq!(packet.header.src_port, [0, 1]);
3761 /// assert_eq!(packet.header.dst_port, [2, 3]);
3762 /// assert_eq!(packet.header.length, [4, 5]);
3763 /// assert_eq!(packet.header.checksum, [6, 7]);
3764 /// assert_eq!(packet.body, [[8, 9], [10, 11], [12, 13]]);
3765 /// assert_eq!(suffix, &[14u8][..]);
3766 /// ```
3767 #[must_use = "has no side effects"]
3768 #[inline]
3769 fn ref_from_prefix(source: &[u8]) -> Result<(&Self, &[u8]), CastError<&[u8], Self>>
3770 where
3771 Self: KnownLayout + Immutable,
3772 {
3773 static_assert_dst_is_not_zst!(Self);
3774 ref_from_prefix_suffix(source, None, CastType::Prefix)
3775 }
3776
3777 /// Interprets the suffix of the given bytes as a `&Self`.
3778 ///
3779 /// This method computes the [largest possible size of `Self`][valid-size]
3780 /// that can fit in the trailing bytes of `source`, then attempts to return
3781 /// both a reference to those bytes interpreted as a `Self`, and a reference
3782 /// to the preceding bytes. If there are insufficient bytes, or if that
3783 /// suffix of `source` is not appropriately aligned, this returns `Err`. If
3784 /// [`Self: Unaligned`][self-unaligned], you can [infallibly discard the
3785 /// alignment error][size-error-from].
3786 ///
3787 /// `Self` may be a sized type, a slice, or a [slice DST][slice-dst].
3788 ///
3789 /// [valid-size]: crate::KnownLayout#what-is-a-valid-size
3790 /// [self-unaligned]: Unaligned
3791 /// [size-error-from]: error/struct.SizeError.html#method.from-1
3792 /// [slice-dst]: KnownLayout#dynamically-sized-types
3793 ///
3794 /// # Compile-Time Assertions
3795 ///
3796 /// This method cannot yet be used on unsized types whose dynamically-sized
3797 /// component is zero-sized. See [`ref_from_suffix_with_elems`], which does
3798 /// support such types. Attempting to use this method on such types results
3799 /// in a compile-time assertion error; e.g.:
3800 ///
3801 /// ```compile_fail,E0080
3802 /// use zerocopy::*;
3803 /// # use zerocopy_derive::*;
3804 ///
3805 /// #[derive(FromBytes, Immutable, KnownLayout)]
3806 /// #[repr(C)]
3807 /// struct ZSTy {
3808 /// leading_sized: u16,
3809 /// trailing_dst: [()],
3810 /// }
3811 ///
3812 /// let _ = ZSTy::ref_from_suffix(0u16.as_bytes()); // âš Compile Error!
3813 /// ```
3814 ///
3815 /// [`ref_from_suffix_with_elems`]: FromBytes::ref_from_suffix_with_elems
3816 ///
3817 /// # Examples
3818 ///
3819 /// ```
3820 /// use zerocopy::FromBytes;
3821 /// # use zerocopy_derive::*;
3822 ///
3823 /// #[derive(FromBytes, Immutable, KnownLayout)]
3824 /// #[repr(C)]
3825 /// struct PacketTrailer {
3826 /// frame_check_sequence: [u8; 4],
3827 /// }
3828 ///
3829 /// // These are more bytes than are needed to encode a `PacketTrailer`.
3830 /// let bytes = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..];
3831 ///
3832 /// let (prefix, trailer) = PacketTrailer::ref_from_suffix(bytes).unwrap();
3833 ///
3834 /// assert_eq!(prefix, &[0, 1, 2, 3, 4, 5][..]);
3835 /// assert_eq!(trailer.frame_check_sequence, [6, 7, 8, 9]);
3836 /// ```
3837 #[must_use = "has no side effects"]
3838 #[inline]
3839 fn ref_from_suffix(source: &[u8]) -> Result<(&[u8], &Self), CastError<&[u8], Self>>
3840 where
3841 Self: Immutable + KnownLayout,
3842 {
3843 static_assert_dst_is_not_zst!(Self);
3844 ref_from_prefix_suffix(source, None, CastType::Suffix).map(swap)
3845 }
3846
3847 /// Interprets the given `source` as a `&mut Self`.
3848 ///
3849 /// This method attempts to return a reference to `source` interpreted as a
3850 /// `Self`. If the length of `source` is not a [valid size of
3851 /// `Self`][valid-size], or if `source` is not appropriately aligned, this
3852 /// returns `Err`. If [`Self: Unaligned`][self-unaligned], you can
3853 /// [infallibly discard the alignment error][size-error-from].
3854 ///
3855 /// `Self` may be a sized type, a slice, or a [slice DST][slice-dst].
3856 ///
3857 /// [valid-size]: crate::KnownLayout#what-is-a-valid-size
3858 /// [self-unaligned]: Unaligned
3859 /// [size-error-from]: error/struct.SizeError.html#method.from-1
3860 /// [slice-dst]: KnownLayout#dynamically-sized-types
3861 ///
3862 /// # Compile-Time Assertions
3863 ///
3864 /// This method cannot yet be used on unsized types whose dynamically-sized
3865 /// component is zero-sized. See [`mut_from_prefix_with_elems`], which does
3866 /// support such types. Attempting to use this method on such types results
3867 /// in a compile-time assertion error; e.g.:
3868 ///
3869 /// ```compile_fail,E0080
3870 /// use zerocopy::*;
3871 /// # use zerocopy_derive::*;
3872 ///
3873 /// #[derive(FromBytes, Immutable, IntoBytes, KnownLayout)]
3874 /// #[repr(C, packed)]
3875 /// struct ZSTy {
3876 /// leading_sized: [u8; 2],
3877 /// trailing_dst: [()],
3878 /// }
3879 ///
3880 /// let mut source = [85, 85];
3881 /// let _ = ZSTy::mut_from_bytes(&mut source[..]); // âš Compile Error!
3882 /// ```
3883 ///
3884 /// [`mut_from_prefix_with_elems`]: FromBytes::mut_from_prefix_with_elems
3885 ///
3886 /// # Examples
3887 ///
3888 /// ```
3889 /// use zerocopy::FromBytes;
3890 /// # use zerocopy_derive::*;
3891 ///
3892 /// #[derive(FromBytes, IntoBytes, KnownLayout, Immutable)]
3893 /// #[repr(C)]
3894 /// struct PacketHeader {
3895 /// src_port: [u8; 2],
3896 /// dst_port: [u8; 2],
3897 /// length: [u8; 2],
3898 /// checksum: [u8; 2],
3899 /// }
3900 ///
3901 /// // These bytes encode a `PacketHeader`.
3902 /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7][..];
3903 ///
3904 /// let header = PacketHeader::mut_from_bytes(bytes).unwrap();
3905 ///
3906 /// assert_eq!(header.src_port, [0, 1]);
3907 /// assert_eq!(header.dst_port, [2, 3]);
3908 /// assert_eq!(header.length, [4, 5]);
3909 /// assert_eq!(header.checksum, [6, 7]);
3910 ///
3911 /// header.checksum = [0, 0];
3912 ///
3913 /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 0, 0]);
3914 /// ```
3915 #[must_use = "has no side effects"]
3916 #[inline]
3917 fn mut_from_bytes(source: &mut [u8]) -> Result<&mut Self, CastError<&mut [u8], Self>>
3918 where
3919 Self: IntoBytes + KnownLayout,
3920 {
3921 static_assert_dst_is_not_zst!(Self);
3922 match Ptr::from_mut(source).try_cast_into_no_leftover::<_, BecauseExclusive>(None) {
3923 Ok(ptr) => Ok(ptr.recall_validity::<_, (_, (_, _))>().as_mut()),
3924 Err(err) => Err(err.map_src(|src| src.as_mut())),
3925 }
3926 }
3927
3928 /// Interprets the prefix of the given `source` as a `&mut Self` without
3929 /// copying.
3930 ///
3931 /// This method computes the [largest possible size of `Self`][valid-size]
3932 /// that can fit in the leading bytes of `source`, then attempts to return
3933 /// both a reference to those bytes interpreted as a `Self`, and a reference
3934 /// to the remaining bytes. If there are insufficient bytes, or if `source`
3935 /// is not appropriately aligned, this returns `Err`. If [`Self:
3936 /// Unaligned`][self-unaligned], you can [infallibly discard the alignment
3937 /// error][size-error-from].
3938 ///
3939 /// `Self` may be a sized type, a slice, or a [slice DST][slice-dst].
3940 ///
3941 /// [valid-size]: crate::KnownLayout#what-is-a-valid-size
3942 /// [self-unaligned]: Unaligned
3943 /// [size-error-from]: error/struct.SizeError.html#method.from-1
3944 /// [slice-dst]: KnownLayout#dynamically-sized-types
3945 ///
3946 /// # Compile-Time Assertions
3947 ///
3948 /// This method cannot yet be used on unsized types whose dynamically-sized
3949 /// component is zero-sized. See [`mut_from_suffix_with_elems`], which does
3950 /// support such types. Attempting to use this method on such types results
3951 /// in a compile-time assertion error; e.g.:
3952 ///
3953 /// ```compile_fail,E0080
3954 /// use zerocopy::*;
3955 /// # use zerocopy_derive::*;
3956 ///
3957 /// #[derive(FromBytes, Immutable, IntoBytes, KnownLayout)]
3958 /// #[repr(C, packed)]
3959 /// struct ZSTy {
3960 /// leading_sized: [u8; 2],
3961 /// trailing_dst: [()],
3962 /// }
3963 ///
3964 /// let mut source = [85, 85];
3965 /// let _ = ZSTy::mut_from_prefix(&mut source[..]); // âš Compile Error!
3966 /// ```
3967 ///
3968 /// [`mut_from_suffix_with_elems`]: FromBytes::mut_from_suffix_with_elems
3969 ///
3970 /// # Examples
3971 ///
3972 /// ```
3973 /// use zerocopy::FromBytes;
3974 /// # use zerocopy_derive::*;
3975 ///
3976 /// #[derive(FromBytes, IntoBytes, KnownLayout, Immutable)]
3977 /// #[repr(C)]
3978 /// struct PacketHeader {
3979 /// src_port: [u8; 2],
3980 /// dst_port: [u8; 2],
3981 /// length: [u8; 2],
3982 /// checksum: [u8; 2],
3983 /// }
3984 ///
3985 /// // These are more bytes than are needed to encode a `PacketHeader`.
3986 /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..];
3987 ///
3988 /// let (header, body) = PacketHeader::mut_from_prefix(bytes).unwrap();
3989 ///
3990 /// assert_eq!(header.src_port, [0, 1]);
3991 /// assert_eq!(header.dst_port, [2, 3]);
3992 /// assert_eq!(header.length, [4, 5]);
3993 /// assert_eq!(header.checksum, [6, 7]);
3994 /// assert_eq!(body, &[8, 9][..]);
3995 ///
3996 /// header.checksum = [0, 0];
3997 /// body.fill(1);
3998 ///
3999 /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 0, 0, 1, 1]);
4000 /// ```
4001 #[must_use = "has no side effects"]
4002 #[inline]
4003 fn mut_from_prefix(
4004 source: &mut [u8],
4005 ) -> Result<(&mut Self, &mut [u8]), CastError<&mut [u8], Self>>
4006 where
4007 Self: IntoBytes + KnownLayout,
4008 {
4009 static_assert_dst_is_not_zst!(Self);
4010 mut_from_prefix_suffix(source, None, CastType::Prefix)
4011 }
4012
4013 /// Interprets the suffix of the given `source` as a `&mut Self` without
4014 /// copying.
4015 ///
4016 /// This method computes the [largest possible size of `Self`][valid-size]
4017 /// that can fit in the trailing bytes of `source`, then attempts to return
4018 /// both a reference to those bytes interpreted as a `Self`, and a reference
4019 /// to the preceding bytes. If there are insufficient bytes, or if that
4020 /// suffix of `source` is not appropriately aligned, this returns `Err`. If
4021 /// [`Self: Unaligned`][self-unaligned], you can [infallibly discard the
4022 /// alignment error][size-error-from].
4023 ///
4024 /// `Self` may be a sized type, a slice, or a [slice DST][slice-dst].
4025 ///
4026 /// [valid-size]: crate::KnownLayout#what-is-a-valid-size
4027 /// [self-unaligned]: Unaligned
4028 /// [size-error-from]: error/struct.SizeError.html#method.from-1
4029 /// [slice-dst]: KnownLayout#dynamically-sized-types
4030 ///
4031 /// # Compile-Time Assertions
4032 ///
4033 /// This method cannot yet be used on unsized types whose dynamically-sized
4034 /// component is zero-sized. Attempting to use this method on such types
4035 /// results in a compile-time assertion error; e.g.:
4036 ///
4037 /// ```compile_fail,E0080
4038 /// use zerocopy::*;
4039 /// # use zerocopy_derive::*;
4040 ///
4041 /// #[derive(FromBytes, Immutable, IntoBytes, KnownLayout)]
4042 /// #[repr(C, packed)]
4043 /// struct ZSTy {
4044 /// leading_sized: [u8; 2],
4045 /// trailing_dst: [()],
4046 /// }
4047 ///
4048 /// let mut source = [85, 85];
4049 /// let _ = ZSTy::mut_from_suffix(&mut source[..]); // âš Compile Error!
4050 /// ```
4051 ///
4052 /// # Examples
4053 ///
4054 /// ```
4055 /// use zerocopy::FromBytes;
4056 /// # use zerocopy_derive::*;
4057 ///
4058 /// #[derive(FromBytes, IntoBytes, KnownLayout, Immutable)]
4059 /// #[repr(C)]
4060 /// struct PacketTrailer {
4061 /// frame_check_sequence: [u8; 4],
4062 /// }
4063 ///
4064 /// // These are more bytes than are needed to encode a `PacketTrailer`.
4065 /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..];
4066 ///
4067 /// let (prefix, trailer) = PacketTrailer::mut_from_suffix(bytes).unwrap();
4068 ///
4069 /// assert_eq!(prefix, &[0u8, 1, 2, 3, 4, 5][..]);
4070 /// assert_eq!(trailer.frame_check_sequence, [6, 7, 8, 9]);
4071 ///
4072 /// prefix.fill(0);
4073 /// trailer.frame_check_sequence.fill(1);
4074 ///
4075 /// assert_eq!(bytes, [0, 0, 0, 0, 0, 0, 1, 1, 1, 1]);
4076 /// ```
4077 #[must_use = "has no side effects"]
4078 #[inline]
4079 fn mut_from_suffix(
4080 source: &mut [u8],
4081 ) -> Result<(&mut [u8], &mut Self), CastError<&mut [u8], Self>>
4082 where
4083 Self: IntoBytes + KnownLayout,
4084 {
4085 static_assert_dst_is_not_zst!(Self);
4086 mut_from_prefix_suffix(source, None, CastType::Suffix).map(swap)
4087 }
4088
4089 /// Interprets the given `source` as a `&Self` with a DST length equal to
4090 /// `count`.
4091 ///
4092 /// This method attempts to return a reference to `source` interpreted as a
4093 /// `Self` with `count` trailing elements. If the length of `source` is not
4094 /// equal to the size of `Self` with `count` elements, or if `source` is not
4095 /// appropriately aligned, this returns `Err`. If [`Self:
4096 /// Unaligned`][self-unaligned], you can [infallibly discard the alignment
4097 /// error][size-error-from].
4098 ///
4099 /// [self-unaligned]: Unaligned
4100 /// [size-error-from]: error/struct.SizeError.html#method.from-1
4101 ///
4102 /// # Examples
4103 ///
4104 /// ```
4105 /// use zerocopy::FromBytes;
4106 /// # use zerocopy_derive::*;
4107 ///
4108 /// # #[derive(Debug, PartialEq, Eq)]
4109 /// #[derive(FromBytes, Immutable)]
4110 /// #[repr(C)]
4111 /// struct Pixel {
4112 /// r: u8,
4113 /// g: u8,
4114 /// b: u8,
4115 /// a: u8,
4116 /// }
4117 ///
4118 /// let bytes = &[0, 1, 2, 3, 4, 5, 6, 7][..];
4119 ///
4120 /// let pixels = <[Pixel]>::ref_from_bytes_with_elems(bytes, 2).unwrap();
4121 ///
4122 /// assert_eq!(pixels, &[
4123 /// Pixel { r: 0, g: 1, b: 2, a: 3 },
4124 /// Pixel { r: 4, g: 5, b: 6, a: 7 },
4125 /// ]);
4126 ///
4127 /// ```
4128 ///
4129 /// Since an explicit `count` is provided, this method supports types with
4130 /// zero-sized trailing slice elements. Methods such as [`ref_from_bytes`]
4131 /// which do not take an explicit count do not support such types.
4132 ///
4133 /// ```
4134 /// use zerocopy::*;
4135 /// # use zerocopy_derive::*;
4136 ///
4137 /// #[derive(FromBytes, Immutable, KnownLayout)]
4138 /// #[repr(C)]
4139 /// struct ZSTy {
4140 /// leading_sized: [u8; 2],
4141 /// trailing_dst: [()],
4142 /// }
4143 ///
4144 /// let src = &[85, 85][..];
4145 /// let zsty = ZSTy::ref_from_bytes_with_elems(src, 42).unwrap();
4146 /// assert_eq!(zsty.trailing_dst.len(), 42);
4147 /// ```
4148 ///
4149 /// [`ref_from_bytes`]: FromBytes::ref_from_bytes
4150 #[must_use = "has no side effects"]
4151 #[inline]
4152 fn ref_from_bytes_with_elems(
4153 source: &[u8],
4154 count: usize,
4155 ) -> Result<&Self, CastError<&[u8], Self>>
4156 where
4157 Self: KnownLayout<PointerMetadata = usize> + Immutable,
4158 {
4159 let source = Ptr::from_ref(source);
4160 let maybe_slf = source.try_cast_into_no_leftover::<_, BecauseImmutable>(Some(count));
4161 match maybe_slf {
4162 Ok(slf) => Ok(slf.recall_validity().as_ref()),
4163 Err(err) => Err(err.map_src(|s| s.as_ref())),
4164 }
4165 }
4166
4167 /// Interprets the prefix of the given `source` as a DST `&Self` with length
4168 /// equal to `count`.
4169 ///
4170 /// This method attempts to return a reference to the prefix of `source`
4171 /// interpreted as a `Self` with `count` trailing elements, and a reference
4172 /// to the remaining bytes. If there are insufficient bytes, or if `source`
4173 /// is not appropriately aligned, this returns `Err`. If [`Self:
4174 /// Unaligned`][self-unaligned], you can [infallibly discard the alignment
4175 /// error][size-error-from].
4176 ///
4177 /// [self-unaligned]: Unaligned
4178 /// [size-error-from]: error/struct.SizeError.html#method.from-1
4179 ///
4180 /// # Examples
4181 ///
4182 /// ```
4183 /// use zerocopy::FromBytes;
4184 /// # use zerocopy_derive::*;
4185 ///
4186 /// # #[derive(Debug, PartialEq, Eq)]
4187 /// #[derive(FromBytes, Immutable)]
4188 /// #[repr(C)]
4189 /// struct Pixel {
4190 /// r: u8,
4191 /// g: u8,
4192 /// b: u8,
4193 /// a: u8,
4194 /// }
4195 ///
4196 /// // These are more bytes than are needed to encode two `Pixel`s.
4197 /// let bytes = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..];
4198 ///
4199 /// let (pixels, suffix) = <[Pixel]>::ref_from_prefix_with_elems(bytes, 2).unwrap();
4200 ///
4201 /// assert_eq!(pixels, &[
4202 /// Pixel { r: 0, g: 1, b: 2, a: 3 },
4203 /// Pixel { r: 4, g: 5, b: 6, a: 7 },
4204 /// ]);
4205 ///
4206 /// assert_eq!(suffix, &[8, 9]);
4207 /// ```
4208 ///
4209 /// Since an explicit `count` is provided, this method supports types with
4210 /// zero-sized trailing slice elements. Methods such as [`ref_from_prefix`]
4211 /// which do not take an explicit count do not support such types.
4212 ///
4213 /// ```
4214 /// use zerocopy::*;
4215 /// # use zerocopy_derive::*;
4216 ///
4217 /// #[derive(FromBytes, Immutable, KnownLayout)]
4218 /// #[repr(C)]
4219 /// struct ZSTy {
4220 /// leading_sized: [u8; 2],
4221 /// trailing_dst: [()],
4222 /// }
4223 ///
4224 /// let src = &[85, 85][..];
4225 /// let (zsty, _) = ZSTy::ref_from_prefix_with_elems(src, 42).unwrap();
4226 /// assert_eq!(zsty.trailing_dst.len(), 42);
4227 /// ```
4228 ///
4229 /// [`ref_from_prefix`]: FromBytes::ref_from_prefix
4230 #[must_use = "has no side effects"]
4231 #[inline]
4232 fn ref_from_prefix_with_elems(
4233 source: &[u8],
4234 count: usize,
4235 ) -> Result<(&Self, &[u8]), CastError<&[u8], Self>>
4236 where
4237 Self: KnownLayout<PointerMetadata = usize> + Immutable,
4238 {
4239 ref_from_prefix_suffix(source, Some(count), CastType::Prefix)
4240 }
4241
4242 /// Interprets the suffix of the given `source` as a DST `&Self` with length
4243 /// equal to `count`.
4244 ///
4245 /// This method attempts to return a reference to the suffix of `source`
4246 /// interpreted as a `Self` with `count` trailing elements, and a reference
4247 /// to the preceding bytes. If there are insufficient bytes, or if that
4248 /// suffix of `source` is not appropriately aligned, this returns `Err`. If
4249 /// [`Self: Unaligned`][self-unaligned], you can [infallibly discard the
4250 /// alignment error][size-error-from].
4251 ///
4252 /// [self-unaligned]: Unaligned
4253 /// [size-error-from]: error/struct.SizeError.html#method.from-1
4254 ///
4255 /// # Examples
4256 ///
4257 /// ```
4258 /// use zerocopy::FromBytes;
4259 /// # use zerocopy_derive::*;
4260 ///
4261 /// # #[derive(Debug, PartialEq, Eq)]
4262 /// #[derive(FromBytes, Immutable)]
4263 /// #[repr(C)]
4264 /// struct Pixel {
4265 /// r: u8,
4266 /// g: u8,
4267 /// b: u8,
4268 /// a: u8,
4269 /// }
4270 ///
4271 /// // These are more bytes than are needed to encode two `Pixel`s.
4272 /// let bytes = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..];
4273 ///
4274 /// let (prefix, pixels) = <[Pixel]>::ref_from_suffix_with_elems(bytes, 2).unwrap();
4275 ///
4276 /// assert_eq!(prefix, &[0, 1]);
4277 ///
4278 /// assert_eq!(pixels, &[
4279 /// Pixel { r: 2, g: 3, b: 4, a: 5 },
4280 /// Pixel { r: 6, g: 7, b: 8, a: 9 },
4281 /// ]);
4282 /// ```
4283 ///
4284 /// Since an explicit `count` is provided, this method supports types with
4285 /// zero-sized trailing slice elements. Methods such as [`ref_from_suffix`]
4286 /// which do not take an explicit count do not support such types.
4287 ///
4288 /// ```
4289 /// use zerocopy::*;
4290 /// # use zerocopy_derive::*;
4291 ///
4292 /// #[derive(FromBytes, Immutable, KnownLayout)]
4293 /// #[repr(C)]
4294 /// struct ZSTy {
4295 /// leading_sized: [u8; 2],
4296 /// trailing_dst: [()],
4297 /// }
4298 ///
4299 /// let src = &[85, 85][..];
4300 /// let (_, zsty) = ZSTy::ref_from_suffix_with_elems(src, 42).unwrap();
4301 /// assert_eq!(zsty.trailing_dst.len(), 42);
4302 /// ```
4303 ///
4304 /// [`ref_from_suffix`]: FromBytes::ref_from_suffix
4305 #[must_use = "has no side effects"]
4306 #[inline]
4307 fn ref_from_suffix_with_elems(
4308 source: &[u8],
4309 count: usize,
4310 ) -> Result<(&[u8], &Self), CastError<&[u8], Self>>
4311 where
4312 Self: KnownLayout<PointerMetadata = usize> + Immutable,
4313 {
4314 ref_from_prefix_suffix(source, Some(count), CastType::Suffix).map(swap)
4315 }
4316
4317 /// Interprets the given `source` as a `&mut Self` with a DST length equal
4318 /// to `count`.
4319 ///
4320 /// This method attempts to return a reference to `source` interpreted as a
4321 /// `Self` with `count` trailing elements. If the length of `source` is not
4322 /// equal to the size of `Self` with `count` elements, or if `source` is not
4323 /// appropriately aligned, this returns `Err`. If [`Self:
4324 /// Unaligned`][self-unaligned], you can [infallibly discard the alignment
4325 /// error][size-error-from].
4326 ///
4327 /// [self-unaligned]: Unaligned
4328 /// [size-error-from]: error/struct.SizeError.html#method.from-1
4329 ///
4330 /// # Examples
4331 ///
4332 /// ```
4333 /// use zerocopy::FromBytes;
4334 /// # use zerocopy_derive::*;
4335 ///
4336 /// # #[derive(Debug, PartialEq, Eq)]
4337 /// #[derive(KnownLayout, FromBytes, IntoBytes, Immutable)]
4338 /// #[repr(C)]
4339 /// struct Pixel {
4340 /// r: u8,
4341 /// g: u8,
4342 /// b: u8,
4343 /// a: u8,
4344 /// }
4345 ///
4346 /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7][..];
4347 ///
4348 /// let pixels = <[Pixel]>::mut_from_bytes_with_elems(bytes, 2).unwrap();
4349 ///
4350 /// assert_eq!(pixels, &[
4351 /// Pixel { r: 0, g: 1, b: 2, a: 3 },
4352 /// Pixel { r: 4, g: 5, b: 6, a: 7 },
4353 /// ]);
4354 ///
4355 /// pixels[1] = Pixel { r: 0, g: 0, b: 0, a: 0 };
4356 ///
4357 /// assert_eq!(bytes, [0, 1, 2, 3, 0, 0, 0, 0]);
4358 /// ```
4359 ///
4360 /// Since an explicit `count` is provided, this method supports types with
4361 /// zero-sized trailing slice elements. Methods such as [`mut_from`] which
4362 /// do not take an explicit count do not support such types.
4363 ///
4364 /// ```
4365 /// use zerocopy::*;
4366 /// # use zerocopy_derive::*;
4367 ///
4368 /// #[derive(FromBytes, IntoBytes, Immutable, KnownLayout)]
4369 /// #[repr(C, packed)]
4370 /// struct ZSTy {
4371 /// leading_sized: [u8; 2],
4372 /// trailing_dst: [()],
4373 /// }
4374 ///
4375 /// let src = &mut [85, 85][..];
4376 /// let zsty = ZSTy::mut_from_bytes_with_elems(src, 42).unwrap();
4377 /// assert_eq!(zsty.trailing_dst.len(), 42);
4378 /// ```
4379 ///
4380 /// [`mut_from`]: FromBytes::mut_from
4381 #[must_use = "has no side effects"]
4382 #[inline]
4383 fn mut_from_bytes_with_elems(
4384 source: &mut [u8],
4385 count: usize,
4386 ) -> Result<&mut Self, CastError<&mut [u8], Self>>
4387 where
4388 Self: IntoBytes + KnownLayout<PointerMetadata = usize> + Immutable,
4389 {
4390 let source = Ptr::from_mut(source);
4391 let maybe_slf = source.try_cast_into_no_leftover::<_, BecauseImmutable>(Some(count));
4392 match maybe_slf {
4393 Ok(slf) => Ok(slf
4394 .recall_validity::<_, (_, (_, (BecauseExclusive, BecauseExclusive)))>()
4395 .as_mut()),
4396 Err(err) => Err(err.map_src(|s| s.as_mut())),
4397 }
4398 }
4399
4400 /// Interprets the prefix of the given `source` as a `&mut Self` with DST
4401 /// length equal to `count`.
4402 ///
4403 /// This method attempts to return a reference to the prefix of `source`
4404 /// interpreted as a `Self` with `count` trailing elements, and a reference
4405 /// to the preceding bytes. If there are insufficient bytes, or if `source`
4406 /// is not appropriately aligned, this returns `Err`. If [`Self:
4407 /// Unaligned`][self-unaligned], you can [infallibly discard the alignment
4408 /// error][size-error-from].
4409 ///
4410 /// [self-unaligned]: Unaligned
4411 /// [size-error-from]: error/struct.SizeError.html#method.from-1
4412 ///
4413 /// # Examples
4414 ///
4415 /// ```
4416 /// use zerocopy::FromBytes;
4417 /// # use zerocopy_derive::*;
4418 ///
4419 /// # #[derive(Debug, PartialEq, Eq)]
4420 /// #[derive(KnownLayout, FromBytes, IntoBytes, Immutable)]
4421 /// #[repr(C)]
4422 /// struct Pixel {
4423 /// r: u8,
4424 /// g: u8,
4425 /// b: u8,
4426 /// a: u8,
4427 /// }
4428 ///
4429 /// // These are more bytes than are needed to encode two `Pixel`s.
4430 /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..];
4431 ///
4432 /// let (pixels, suffix) = <[Pixel]>::mut_from_prefix_with_elems(bytes, 2).unwrap();
4433 ///
4434 /// assert_eq!(pixels, &[
4435 /// Pixel { r: 0, g: 1, b: 2, a: 3 },
4436 /// Pixel { r: 4, g: 5, b: 6, a: 7 },
4437 /// ]);
4438 ///
4439 /// assert_eq!(suffix, &[8, 9]);
4440 ///
4441 /// pixels[1] = Pixel { r: 0, g: 0, b: 0, a: 0 };
4442 /// suffix.fill(1);
4443 ///
4444 /// assert_eq!(bytes, [0, 1, 2, 3, 0, 0, 0, 0, 1, 1]);
4445 /// ```
4446 ///
4447 /// Since an explicit `count` is provided, this method supports types with
4448 /// zero-sized trailing slice elements. Methods such as [`mut_from_prefix`]
4449 /// which do not take an explicit count do not support such types.
4450 ///
4451 /// ```
4452 /// use zerocopy::*;
4453 /// # use zerocopy_derive::*;
4454 ///
4455 /// #[derive(FromBytes, IntoBytes, Immutable, KnownLayout)]
4456 /// #[repr(C, packed)]
4457 /// struct ZSTy {
4458 /// leading_sized: [u8; 2],
4459 /// trailing_dst: [()],
4460 /// }
4461 ///
4462 /// let src = &mut [85, 85][..];
4463 /// let (zsty, _) = ZSTy::mut_from_prefix_with_elems(src, 42).unwrap();
4464 /// assert_eq!(zsty.trailing_dst.len(), 42);
4465 /// ```
4466 ///
4467 /// [`mut_from_prefix`]: FromBytes::mut_from_prefix
4468 #[must_use = "has no side effects"]
4469 #[inline]
4470 fn mut_from_prefix_with_elems(
4471 source: &mut [u8],
4472 count: usize,
4473 ) -> Result<(&mut Self, &mut [u8]), CastError<&mut [u8], Self>>
4474 where
4475 Self: IntoBytes + KnownLayout<PointerMetadata = usize>,
4476 {
4477 mut_from_prefix_suffix(source, Some(count), CastType::Prefix)
4478 }
4479
4480 /// Interprets the suffix of the given `source` as a `&mut Self` with DST
4481 /// length equal to `count`.
4482 ///
4483 /// This method attempts to return a reference to the suffix of `source`
4484 /// interpreted as a `Self` with `count` trailing elements, and a reference
4485 /// to the remaining bytes. If there are insufficient bytes, or if that
4486 /// suffix of `source` is not appropriately aligned, this returns `Err`. If
4487 /// [`Self: Unaligned`][self-unaligned], you can [infallibly discard the
4488 /// alignment error][size-error-from].
4489 ///
4490 /// [self-unaligned]: Unaligned
4491 /// [size-error-from]: error/struct.SizeError.html#method.from-1
4492 ///
4493 /// # Examples
4494 ///
4495 /// ```
4496 /// use zerocopy::FromBytes;
4497 /// # use zerocopy_derive::*;
4498 ///
4499 /// # #[derive(Debug, PartialEq, Eq)]
4500 /// #[derive(FromBytes, IntoBytes, Immutable)]
4501 /// #[repr(C)]
4502 /// struct Pixel {
4503 /// r: u8,
4504 /// g: u8,
4505 /// b: u8,
4506 /// a: u8,
4507 /// }
4508 ///
4509 /// // These are more bytes than are needed to encode two `Pixel`s.
4510 /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..];
4511 ///
4512 /// let (prefix, pixels) = <[Pixel]>::mut_from_suffix_with_elems(bytes, 2).unwrap();
4513 ///
4514 /// assert_eq!(prefix, &[0, 1]);
4515 ///
4516 /// assert_eq!(pixels, &[
4517 /// Pixel { r: 2, g: 3, b: 4, a: 5 },
4518 /// Pixel { r: 6, g: 7, b: 8, a: 9 },
4519 /// ]);
4520 ///
4521 /// prefix.fill(9);
4522 /// pixels[1] = Pixel { r: 0, g: 0, b: 0, a: 0 };
4523 ///
4524 /// assert_eq!(bytes, [9, 9, 2, 3, 4, 5, 0, 0, 0, 0]);
4525 /// ```
4526 ///
4527 /// Since an explicit `count` is provided, this method supports types with
4528 /// zero-sized trailing slice elements. Methods such as [`mut_from_suffix`]
4529 /// which do not take an explicit count do not support such types.
4530 ///
4531 /// ```
4532 /// use zerocopy::*;
4533 /// # use zerocopy_derive::*;
4534 ///
4535 /// #[derive(FromBytes, IntoBytes, Immutable, KnownLayout)]
4536 /// #[repr(C, packed)]
4537 /// struct ZSTy {
4538 /// leading_sized: [u8; 2],
4539 /// trailing_dst: [()],
4540 /// }
4541 ///
4542 /// let src = &mut [85, 85][..];
4543 /// let (_, zsty) = ZSTy::mut_from_suffix_with_elems(src, 42).unwrap();
4544 /// assert_eq!(zsty.trailing_dst.len(), 42);
4545 /// ```
4546 ///
4547 /// [`mut_from_suffix`]: FromBytes::mut_from_suffix
4548 #[must_use = "has no side effects"]
4549 #[inline]
4550 fn mut_from_suffix_with_elems(
4551 source: &mut [u8],
4552 count: usize,
4553 ) -> Result<(&mut [u8], &mut Self), CastError<&mut [u8], Self>>
4554 where
4555 Self: IntoBytes + KnownLayout<PointerMetadata = usize>,
4556 {
4557 mut_from_prefix_suffix(source, Some(count), CastType::Suffix).map(swap)
4558 }
4559
4560 /// Reads a copy of `Self` from the given `source`.
4561 ///
4562 /// If `source.len() != size_of::<Self>()`, `read_from_bytes` returns `Err`.
4563 ///
4564 /// # Examples
4565 ///
4566 /// ```
4567 /// use zerocopy::FromBytes;
4568 /// # use zerocopy_derive::*;
4569 ///
4570 /// #[derive(FromBytes)]
4571 /// #[repr(C)]
4572 /// struct PacketHeader {
4573 /// src_port: [u8; 2],
4574 /// dst_port: [u8; 2],
4575 /// length: [u8; 2],
4576 /// checksum: [u8; 2],
4577 /// }
4578 ///
4579 /// // These bytes encode a `PacketHeader`.
4580 /// let bytes = &[0, 1, 2, 3, 4, 5, 6, 7][..];
4581 ///
4582 /// let header = PacketHeader::read_from_bytes(bytes).unwrap();
4583 ///
4584 /// assert_eq!(header.src_port, [0, 1]);
4585 /// assert_eq!(header.dst_port, [2, 3]);
4586 /// assert_eq!(header.length, [4, 5]);
4587 /// assert_eq!(header.checksum, [6, 7]);
4588 /// ```
4589 #[must_use = "has no side effects"]
4590 #[inline]
4591 fn read_from_bytes(source: &[u8]) -> Result<Self, SizeError<&[u8], Self>>
4592 where
4593 Self: Sized,
4594 {
4595 match Ref::<_, Unalign<Self>>::sized_from(source) {
4596 Ok(r) => Ok(Ref::read(&r).into_inner()),
4597 Err(CastError::Size(e)) => Err(e.with_dst()),
4598 Err(CastError::Alignment(_)) => {
4599 // SAFETY: `Unalign<Self>` is trivially aligned, so
4600 // `Ref::sized_from` cannot fail due to unmet alignment
4601 // requirements.
4602 unsafe { core::hint::unreachable_unchecked() }
4603 }
4604 Err(CastError::Validity(i)) => match i {},
4605 }
4606 }
4607
4608 /// Reads a copy of `Self` from the prefix of the given `source`.
4609 ///
4610 /// This attempts to read a `Self` from the first `size_of::<Self>()` bytes
4611 /// of `source`, returning that `Self` and any remaining bytes. If
4612 /// `source.len() < size_of::<Self>()`, it returns `Err`.
4613 ///
4614 /// # Examples
4615 ///
4616 /// ```
4617 /// use zerocopy::FromBytes;
4618 /// # use zerocopy_derive::*;
4619 ///
4620 /// #[derive(FromBytes)]
4621 /// #[repr(C)]
4622 /// struct PacketHeader {
4623 /// src_port: [u8; 2],
4624 /// dst_port: [u8; 2],
4625 /// length: [u8; 2],
4626 /// checksum: [u8; 2],
4627 /// }
4628 ///
4629 /// // These are more bytes than are needed to encode a `PacketHeader`.
4630 /// let bytes = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..];
4631 ///
4632 /// let (header, body) = PacketHeader::read_from_prefix(bytes).unwrap();
4633 ///
4634 /// assert_eq!(header.src_port, [0, 1]);
4635 /// assert_eq!(header.dst_port, [2, 3]);
4636 /// assert_eq!(header.length, [4, 5]);
4637 /// assert_eq!(header.checksum, [6, 7]);
4638 /// assert_eq!(body, [8, 9]);
4639 /// ```
4640 #[must_use = "has no side effects"]
4641 #[inline]
4642 fn read_from_prefix(source: &[u8]) -> Result<(Self, &[u8]), SizeError<&[u8], Self>>
4643 where
4644 Self: Sized,
4645 {
4646 match Ref::<_, Unalign<Self>>::sized_from_prefix(source) {
4647 Ok((r, suffix)) => Ok((Ref::read(&r).into_inner(), suffix)),
4648 Err(CastError::Size(e)) => Err(e.with_dst()),
4649 Err(CastError::Alignment(_)) => {
4650 // SAFETY: `Unalign<Self>` is trivially aligned, so
4651 // `Ref::sized_from_prefix` cannot fail due to unmet alignment
4652 // requirements.
4653 unsafe { core::hint::unreachable_unchecked() }
4654 }
4655 Err(CastError::Validity(i)) => match i {},
4656 }
4657 }
4658
4659 /// Reads a copy of `Self` from the suffix of the given `source`.
4660 ///
4661 /// This attempts to read a `Self` from the last `size_of::<Self>()` bytes
4662 /// of `source`, returning that `Self` and any preceding bytes. If
4663 /// `source.len() < size_of::<Self>()`, it returns `Err`.
4664 ///
4665 /// # Examples
4666 ///
4667 /// ```
4668 /// use zerocopy::FromBytes;
4669 /// # use zerocopy_derive::*;
4670 ///
4671 /// #[derive(FromBytes)]
4672 /// #[repr(C)]
4673 /// struct PacketTrailer {
4674 /// frame_check_sequence: [u8; 4],
4675 /// }
4676 ///
4677 /// // These are more bytes than are needed to encode a `PacketTrailer`.
4678 /// let bytes = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..];
4679 ///
4680 /// let (prefix, trailer) = PacketTrailer::read_from_suffix(bytes).unwrap();
4681 ///
4682 /// assert_eq!(prefix, [0, 1, 2, 3, 4, 5]);
4683 /// assert_eq!(trailer.frame_check_sequence, [6, 7, 8, 9]);
4684 /// ```
4685 #[must_use = "has no side effects"]
4686 #[inline]
4687 fn read_from_suffix(source: &[u8]) -> Result<(&[u8], Self), SizeError<&[u8], Self>>
4688 where
4689 Self: Sized,
4690 {
4691 match Ref::<_, Unalign<Self>>::sized_from_suffix(source) {
4692 Ok((prefix, r)) => Ok((prefix, Ref::read(&r).into_inner())),
4693 Err(CastError::Size(e)) => Err(e.with_dst()),
4694 Err(CastError::Alignment(_)) => {
4695 // SAFETY: `Unalign<Self>` is trivially aligned, so
4696 // `Ref::sized_from_suffix` cannot fail due to unmet alignment
4697 // requirements.
4698 unsafe { core::hint::unreachable_unchecked() }
4699 }
4700 Err(CastError::Validity(i)) => match i {},
4701 }
4702 }
4703
4704 /// Reads a copy of `self` from an `io::Read`.
4705 ///
4706 /// This is useful for interfacing with operating system byte sinks (files,
4707 /// sockets, etc.).
4708 ///
4709 /// # Examples
4710 ///
4711 /// ```no_run
4712 /// use zerocopy::{byteorder::big_endian::*, FromBytes};
4713 /// use std::fs::File;
4714 /// # use zerocopy_derive::*;
4715 ///
4716 /// #[derive(FromBytes)]
4717 /// #[repr(C)]
4718 /// struct BitmapFileHeader {
4719 /// signature: [u8; 2],
4720 /// size: U32,
4721 /// reserved: U64,
4722 /// offset: U64,
4723 /// }
4724 ///
4725 /// let mut file = File::open("image.bin").unwrap();
4726 /// let header = BitmapFileHeader::read_from_io(&mut file).unwrap();
4727 /// ```
4728 #[cfg(feature = "std")]
4729 #[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
4730 #[inline(always)]
4731 fn read_from_io<R>(mut src: R) -> io::Result<Self>
4732 where
4733 Self: Sized,
4734 R: io::Read,
4735 {
4736 // NOTE(#2319, #2320): We do `buf.zero()` separately rather than
4737 // constructing `let buf = CoreMaybeUninit::zeroed()` because, if `Self`
4738 // contains padding bytes, then a typed copy of `CoreMaybeUninit<Self>`
4739 // will not necessarily preserve zeros written to those padding byte
4740 // locations, and so `buf` could contain uninitialized bytes.
4741 let mut buf = CoreMaybeUninit::<Self>::uninit();
4742 buf.zero();
4743
4744 let ptr = Ptr::from_mut(&mut buf);
4745 // SAFETY: After `buf.zero()`, `buf` consists entirely of initialized,
4746 // zeroed bytes. Since `MaybeUninit` has no validity requirements, `ptr`
4747 // cannot be used to write values which will violate `buf`'s bit
4748 // validity. Since `ptr` has `Exclusive` aliasing, nothing other than
4749 // `ptr` may be used to mutate `ptr`'s referent, and so its bit validity
4750 // cannot be violated even though `buf` may have more permissive bit
4751 // validity than `ptr`.
4752 let ptr = unsafe { ptr.assume_validity::<invariant::Initialized>() };
4753 let ptr = ptr.as_bytes::<BecauseExclusive>();
4754 src.read_exact(ptr.as_mut())?;
4755 // SAFETY: `buf` entirely consists of initialized bytes, and `Self` is
4756 // `FromBytes`.
4757 Ok(unsafe { buf.assume_init() })
4758 }
4759
4760 #[deprecated(since = "0.8.0", note = "renamed to `FromBytes::ref_from_bytes`")]
4761 #[doc(hidden)]
4762 #[must_use = "has no side effects"]
4763 #[inline(always)]
4764 fn ref_from(source: &[u8]) -> Option<&Self>
4765 where
4766 Self: KnownLayout + Immutable,
4767 {
4768 Self::ref_from_bytes(source).ok()
4769 }
4770
4771 #[deprecated(since = "0.8.0", note = "renamed to `FromBytes::mut_from_bytes`")]
4772 #[doc(hidden)]
4773 #[must_use = "has no side effects"]
4774 #[inline(always)]
4775 fn mut_from(source: &mut [u8]) -> Option<&mut Self>
4776 where
4777 Self: KnownLayout + IntoBytes,
4778 {
4779 Self::mut_from_bytes(source).ok()
4780 }
4781
4782 #[deprecated(since = "0.8.0", note = "renamed to `FromBytes::ref_from_prefix_with_elems`")]
4783 #[doc(hidden)]
4784 #[must_use = "has no side effects"]
4785 #[inline(always)]
4786 fn slice_from_prefix(source: &[u8], count: usize) -> Option<(&[Self], &[u8])>
4787 where
4788 Self: Sized + Immutable,
4789 {
4790 <[Self]>::ref_from_prefix_with_elems(source, count).ok()
4791 }
4792
4793 #[deprecated(since = "0.8.0", note = "renamed to `FromBytes::ref_from_suffix_with_elems`")]
4794 #[doc(hidden)]
4795 #[must_use = "has no side effects"]
4796 #[inline(always)]
4797 fn slice_from_suffix(source: &[u8], count: usize) -> Option<(&[u8], &[Self])>
4798 where
4799 Self: Sized + Immutable,
4800 {
4801 <[Self]>::ref_from_suffix_with_elems(source, count).ok()
4802 }
4803
4804 #[deprecated(since = "0.8.0", note = "renamed to `FromBytes::mut_from_prefix_with_elems`")]
4805 #[doc(hidden)]
4806 #[must_use = "has no side effects"]
4807 #[inline(always)]
4808 fn mut_slice_from_prefix(source: &mut [u8], count: usize) -> Option<(&mut [Self], &mut [u8])>
4809 where
4810 Self: Sized + IntoBytes,
4811 {
4812 <[Self]>::mut_from_prefix_with_elems(source, count).ok()
4813 }
4814
4815 #[deprecated(since = "0.8.0", note = "renamed to `FromBytes::mut_from_suffix_with_elems`")]
4816 #[doc(hidden)]
4817 #[must_use = "has no side effects"]
4818 #[inline(always)]
4819 fn mut_slice_from_suffix(source: &mut [u8], count: usize) -> Option<(&mut [u8], &mut [Self])>
4820 where
4821 Self: Sized + IntoBytes,
4822 {
4823 <[Self]>::mut_from_suffix_with_elems(source, count).ok()
4824 }
4825
4826 #[deprecated(since = "0.8.0", note = "renamed to `FromBytes::read_from_bytes`")]
4827 #[doc(hidden)]
4828 #[must_use = "has no side effects"]
4829 #[inline(always)]
4830 fn read_from(source: &[u8]) -> Option<Self>
4831 where
4832 Self: Sized,
4833 {
4834 Self::read_from_bytes(source).ok()
4835 }
4836}
4837
4838/// Interprets the given affix of the given bytes as a `&Self`.
4839///
4840/// This method computes the largest possible size of `Self` that can fit in the
4841/// prefix or suffix bytes of `source`, then attempts to return both a reference
4842/// to those bytes interpreted as a `Self`, and a reference to the excess bytes.
4843/// If there are insufficient bytes, or if that affix of `source` is not
4844/// appropriately aligned, this returns `Err`.
4845#[inline(always)]
4846fn ref_from_prefix_suffix<T: FromBytes + KnownLayout + Immutable + ?Sized>(
4847 source: &[u8],
4848 meta: Option<T::PointerMetadata>,
4849 cast_type: CastType,
4850) -> Result<(&T, &[u8]), CastError<&[u8], T>> {
4851 let (slf, prefix_suffix) = Ptr::from_ref(source)
4852 .try_cast_into::<_, BecauseImmutable>(cast_type, meta)
4853 .map_err(|err| err.map_src(|s| s.as_ref()))?;
4854 Ok((slf.recall_validity().as_ref(), prefix_suffix.as_ref()))
4855}
4856
4857/// Interprets the given affix of the given bytes as a `&mut Self` without
4858/// copying.
4859///
4860/// This method computes the largest possible size of `Self` that can fit in the
4861/// prefix or suffix bytes of `source`, then attempts to return both a reference
4862/// to those bytes interpreted as a `Self`, and a reference to the excess bytes.
4863/// If there are insufficient bytes, or if that affix of `source` is not
4864/// appropriately aligned, this returns `Err`.
4865#[inline(always)]
4866fn mut_from_prefix_suffix<T: FromBytes + IntoBytes + KnownLayout + ?Sized>(
4867 source: &mut [u8],
4868 meta: Option<T::PointerMetadata>,
4869 cast_type: CastType,
4870) -> Result<(&mut T, &mut [u8]), CastError<&mut [u8], T>> {
4871 let (slf, prefix_suffix) = Ptr::from_mut(source)
4872 .try_cast_into::<_, BecauseExclusive>(cast_type, meta)
4873 .map_err(|err| err.map_src(|s| s.as_mut()))?;
4874 Ok((slf.recall_validity::<_, (_, (_, _))>().as_mut(), prefix_suffix.as_mut()))
4875}
4876
4877/// Analyzes whether a type is [`IntoBytes`].
4878///
4879/// This derive analyzes, at compile time, whether the annotated type satisfies
4880/// the [safety conditions] of `IntoBytes` and implements `IntoBytes` if it is
4881/// sound to do so. This derive can be applied to structs and enums (see below
4882/// for union support); e.g.:
4883///
4884/// ```
4885/// # use zerocopy_derive::{IntoBytes};
4886/// #[derive(IntoBytes)]
4887/// #[repr(C)]
4888/// struct MyStruct {
4889/// # /*
4890/// ...
4891/// # */
4892/// }
4893///
4894/// #[derive(IntoBytes)]
4895/// #[repr(u8)]
4896/// enum MyEnum {
4897/// # Variant,
4898/// # /*
4899/// ...
4900/// # */
4901/// }
4902/// ```
4903///
4904/// [safety conditions]: trait@IntoBytes#safety
4905///
4906/// # Error Messages
4907///
4908/// On Rust toolchains prior to 1.78.0, due to the way that the custom derive
4909/// for `IntoBytes` is implemented, you may get an error like this:
4910///
4911/// ```text
4912/// error[E0277]: the trait bound `(): PaddingFree<Foo, true>` is not satisfied
4913/// --> lib.rs:23:10
4914/// |
4915/// 1 | #[derive(IntoBytes)]
4916/// | ^^^^^^^^^ the trait `PaddingFree<Foo, true>` is not implemented for `()`
4917/// |
4918/// = help: the following implementations were found:
4919/// <() as PaddingFree<T, false>>
4920/// ```
4921///
4922/// This error indicates that the type being annotated has padding bytes, which
4923/// is illegal for `IntoBytes` types. Consider reducing the alignment of some
4924/// fields by using types in the [`byteorder`] module, wrapping field types in
4925/// [`Unalign`], adding explicit struct fields where those padding bytes would
4926/// be, or using `#[repr(packed)]`. See the Rust Reference's page on [type
4927/// layout] for more information about type layout and padding.
4928///
4929/// [type layout]: https://doc.rust-lang.org/reference/type-layout.html
4930///
4931/// # Unions
4932///
4933/// Currently, union bit validity is [up in the air][union-validity], and so
4934/// zerocopy does not support `#[derive(IntoBytes)]` on unions by default.
4935/// However, implementing `IntoBytes` on a union type is likely sound on all
4936/// existing Rust toolchains - it's just that it may become unsound in the
4937/// future. You can opt-in to `#[derive(IntoBytes)]` support on unions by
4938/// passing the unstable `zerocopy_derive_union_into_bytes` cfg:
4939///
4940/// ```shell
4941/// $ RUSTFLAGS='--cfg zerocopy_derive_union_into_bytes' cargo build
4942/// ```
4943///
4944/// However, it is your responsibility to ensure that this derive is sound on
4945/// the specific versions of the Rust toolchain you are using! We make no
4946/// stability or soundness guarantees regarding this cfg, and may remove it at
4947/// any point.
4948///
4949/// We are actively working with Rust to stabilize the necessary language
4950/// guarantees to support this in a forwards-compatible way, which will enable
4951/// us to remove the cfg gate. As part of this effort, we need to know how much
4952/// demand there is for this feature. If you would like to use `IntoBytes` on
4953/// unions, [please let us know][discussion].
4954///
4955/// [union-validity]: https://github.com/rust-lang/unsafe-code-guidelines/issues/438
4956/// [discussion]: https://github.com/google/zerocopy/discussions/1802
4957///
4958/// # Analysis
4959///
4960/// *This section describes, roughly, the analysis performed by this derive to
4961/// determine whether it is sound to implement `IntoBytes` for a given type.
4962/// Unless you are modifying the implementation of this derive, or attempting to
4963/// manually implement `IntoBytes` for a type yourself, you don't need to read
4964/// this section.*
4965///
4966/// If a type has the following properties, then this derive can implement
4967/// `IntoBytes` for that type:
4968///
4969/// - If the type is a struct, its fields must be [`IntoBytes`]. Additionally:
4970/// - if the type is `repr(transparent)` or `repr(packed)`, it is
4971/// [`IntoBytes`] if its fields are [`IntoBytes`]; else,
4972/// - if the type is `repr(C)` with at most one field, it is [`IntoBytes`]
4973/// if its field is [`IntoBytes`]; else,
4974/// - if the type has no generic parameters, it is [`IntoBytes`] if the type
4975/// is sized and has no padding bytes; else,
4976/// - if the type is `repr(C)`, its fields must be [`Unaligned`].
4977/// - If the type is an enum:
4978/// - It must have a defined representation (`repr`s `C`, `u8`, `u16`, `u32`,
4979/// `u64`, `usize`, `i8`, `i16`, `i32`, `i64`, or `isize`).
4980/// - It must have no padding bytes.
4981/// - Its fields must be [`IntoBytes`].
4982///
4983/// This analysis is subject to change. Unsafe code may *only* rely on the
4984/// documented [safety conditions] of `FromBytes`, and must *not* rely on the
4985/// implementation details of this derive.
4986///
4987/// [Rust Reference]: https://doc.rust-lang.org/reference/type-layout.html
4988#[cfg(any(feature = "derive", test))]
4989#[cfg_attr(doc_cfg, doc(cfg(feature = "derive")))]
4990pub use zerocopy_derive::IntoBytes;
4991
4992/// Types that can be converted to an immutable slice of initialized bytes.
4993///
4994/// Any `IntoBytes` type can be converted to a slice of initialized bytes of the
4995/// same size. This is useful for efficiently serializing structured data as raw
4996/// bytes.
4997///
4998/// # Implementation
4999///
5000/// **Do not implement this trait yourself!** Instead, use
5001/// [`#[derive(IntoBytes)]`][derive]; e.g.:
5002///
5003/// ```
5004/// # use zerocopy_derive::IntoBytes;
5005/// #[derive(IntoBytes)]
5006/// #[repr(C)]
5007/// struct MyStruct {
5008/// # /*
5009/// ...
5010/// # */
5011/// }
5012///
5013/// #[derive(IntoBytes)]
5014/// #[repr(u8)]
5015/// enum MyEnum {
5016/// # Variant0,
5017/// # /*
5018/// ...
5019/// # */
5020/// }
5021/// ```
5022///
5023/// This derive performs a sophisticated, compile-time safety analysis to
5024/// determine whether a type is `IntoBytes`. See the [derive
5025/// documentation][derive] for guidance on how to interpret error messages
5026/// produced by the derive's analysis.
5027///
5028/// # Safety
5029///
5030/// *This section describes what is required in order for `T: IntoBytes`, and
5031/// what unsafe code may assume of such types. If you don't plan on implementing
5032/// `IntoBytes` manually, and you don't plan on writing unsafe code that
5033/// operates on `IntoBytes` types, then you don't need to read this section.*
5034///
5035/// If `T: IntoBytes`, then unsafe code may assume that it is sound to treat any
5036/// `t: T` as an immutable `[u8]` of length `size_of_val(t)`. If a type is
5037/// marked as `IntoBytes` which violates this contract, it may cause undefined
5038/// behavior.
5039///
5040/// `#[derive(IntoBytes)]` only permits [types which satisfy these
5041/// requirements][derive-analysis].
5042///
5043#[cfg_attr(
5044 feature = "derive",
5045 doc = "[derive]: zerocopy_derive::IntoBytes",
5046 doc = "[derive-analysis]: zerocopy_derive::IntoBytes#analysis"
5047)]
5048#[cfg_attr(
5049 not(feature = "derive"),
5050 doc = concat!("[derive]: https://docs.rs/zerocopy/", env!("CARGO_PKG_VERSION"), "/zerocopy/derive.IntoBytes.html"),
5051 doc = concat!("[derive-analysis]: https://docs.rs/zerocopy/", env!("CARGO_PKG_VERSION"), "/zerocopy/derive.IntoBytes.html#analysis"),
5052)]
5053#[cfg_attr(
5054 not(no_zerocopy_diagnostic_on_unimplemented_1_78_0),
5055 diagnostic::on_unimplemented(note = "Consider adding `#[derive(IntoBytes)]` to `{Self}`")
5056)]
5057pub unsafe trait IntoBytes {
5058 // The `Self: Sized` bound makes it so that this function doesn't prevent
5059 // `IntoBytes` from being object safe. Note that other `IntoBytes` methods
5060 // prevent object safety, but those provide a benefit in exchange for object
5061 // safety. If at some point we remove those methods, change their type
5062 // signatures, or move them out of this trait so that `IntoBytes` is object
5063 // safe again, it's important that this function not prevent object safety.
5064 #[doc(hidden)]
5065 fn only_derive_is_allowed_to_implement_this_trait()
5066 where
5067 Self: Sized;
5068
5069 /// Gets the bytes of this value.
5070 ///
5071 /// # Examples
5072 ///
5073 /// ```
5074 /// use zerocopy::IntoBytes;
5075 /// # use zerocopy_derive::*;
5076 ///
5077 /// #[derive(IntoBytes, Immutable)]
5078 /// #[repr(C)]
5079 /// struct PacketHeader {
5080 /// src_port: [u8; 2],
5081 /// dst_port: [u8; 2],
5082 /// length: [u8; 2],
5083 /// checksum: [u8; 2],
5084 /// }
5085 ///
5086 /// let header = PacketHeader {
5087 /// src_port: [0, 1],
5088 /// dst_port: [2, 3],
5089 /// length: [4, 5],
5090 /// checksum: [6, 7],
5091 /// };
5092 ///
5093 /// let bytes = header.as_bytes();
5094 ///
5095 /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 6, 7]);
5096 /// ```
5097 #[must_use = "has no side effects"]
5098 #[inline(always)]
5099 fn as_bytes(&self) -> &[u8]
5100 where
5101 Self: Immutable,
5102 {
5103 // Note that this method does not have a `Self: Sized` bound;
5104 // `size_of_val` works for unsized values too.
5105 let len = mem::size_of_val(self);
5106 let slf: *const Self = self;
5107
5108 // SAFETY:
5109 // - `slf.cast::<u8>()` is valid for reads for `len * size_of::<u8>()`
5110 // many bytes because...
5111 // - `slf` is the same pointer as `self`, and `self` is a reference
5112 // which points to an object whose size is `len`. Thus...
5113 // - The entire region of `len` bytes starting at `slf` is contained
5114 // within a single allocation.
5115 // - `slf` is non-null.
5116 // - `slf` is trivially aligned to `align_of::<u8>() == 1`.
5117 // - `Self: IntoBytes` ensures that all of the bytes of `slf` are
5118 // initialized.
5119 // - Since `slf` is derived from `self`, and `self` is an immutable
5120 // reference, the only other references to this memory region that
5121 // could exist are other immutable references, and those don't allow
5122 // mutation. `Self: Immutable` prohibits types which contain
5123 // `UnsafeCell`s, which are the only types for which this rule
5124 // wouldn't be sufficient.
5125 // - The total size of the resulting slice is no larger than
5126 // `isize::MAX` because no allocation produced by safe code can be
5127 // larger than `isize::MAX`.
5128 //
5129 // FIXME(#429): Add references to docs and quotes.
5130 unsafe { slice::from_raw_parts(slf.cast::<u8>(), len) }
5131 }
5132
5133 /// Gets the bytes of this value mutably.
5134 ///
5135 /// # Examples
5136 ///
5137 /// ```
5138 /// use zerocopy::IntoBytes;
5139 /// # use zerocopy_derive::*;
5140 ///
5141 /// # #[derive(Eq, PartialEq, Debug)]
5142 /// #[derive(FromBytes, IntoBytes, Immutable)]
5143 /// #[repr(C)]
5144 /// struct PacketHeader {
5145 /// src_port: [u8; 2],
5146 /// dst_port: [u8; 2],
5147 /// length: [u8; 2],
5148 /// checksum: [u8; 2],
5149 /// }
5150 ///
5151 /// let mut header = PacketHeader {
5152 /// src_port: [0, 1],
5153 /// dst_port: [2, 3],
5154 /// length: [4, 5],
5155 /// checksum: [6, 7],
5156 /// };
5157 ///
5158 /// let bytes = header.as_mut_bytes();
5159 ///
5160 /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 6, 7]);
5161 ///
5162 /// bytes.reverse();
5163 ///
5164 /// assert_eq!(header, PacketHeader {
5165 /// src_port: [7, 6],
5166 /// dst_port: [5, 4],
5167 /// length: [3, 2],
5168 /// checksum: [1, 0],
5169 /// });
5170 /// ```
5171 #[must_use = "has no side effects"]
5172 #[inline(always)]
5173 fn as_mut_bytes(&mut self) -> &mut [u8]
5174 where
5175 Self: FromBytes,
5176 {
5177 // Note that this method does not have a `Self: Sized` bound;
5178 // `size_of_val` works for unsized values too.
5179 let len = mem::size_of_val(self);
5180 let slf: *mut Self = self;
5181
5182 // SAFETY:
5183 // - `slf.cast::<u8>()` is valid for reads and writes for `len *
5184 // size_of::<u8>()` many bytes because...
5185 // - `slf` is the same pointer as `self`, and `self` is a reference
5186 // which points to an object whose size is `len`. Thus...
5187 // - The entire region of `len` bytes starting at `slf` is contained
5188 // within a single allocation.
5189 // - `slf` is non-null.
5190 // - `slf` is trivially aligned to `align_of::<u8>() == 1`.
5191 // - `Self: IntoBytes` ensures that all of the bytes of `slf` are
5192 // initialized.
5193 // - `Self: FromBytes` ensures that no write to this memory region
5194 // could result in it containing an invalid `Self`.
5195 // - Since `slf` is derived from `self`, and `self` is a mutable
5196 // reference, no other references to this memory region can exist.
5197 // - The total size of the resulting slice is no larger than
5198 // `isize::MAX` because no allocation produced by safe code can be
5199 // larger than `isize::MAX`.
5200 //
5201 // FIXME(#429): Add references to docs and quotes.
5202 unsafe { slice::from_raw_parts_mut(slf.cast::<u8>(), len) }
5203 }
5204
5205 /// Writes a copy of `self` to `dst`.
5206 ///
5207 /// If `dst.len() != size_of_val(self)`, `write_to` returns `Err`.
5208 ///
5209 /// # Examples
5210 ///
5211 /// ```
5212 /// use zerocopy::IntoBytes;
5213 /// # use zerocopy_derive::*;
5214 ///
5215 /// #[derive(IntoBytes, Immutable)]
5216 /// #[repr(C)]
5217 /// struct PacketHeader {
5218 /// src_port: [u8; 2],
5219 /// dst_port: [u8; 2],
5220 /// length: [u8; 2],
5221 /// checksum: [u8; 2],
5222 /// }
5223 ///
5224 /// let header = PacketHeader {
5225 /// src_port: [0, 1],
5226 /// dst_port: [2, 3],
5227 /// length: [4, 5],
5228 /// checksum: [6, 7],
5229 /// };
5230 ///
5231 /// let mut bytes = [0, 0, 0, 0, 0, 0, 0, 0];
5232 ///
5233 /// header.write_to(&mut bytes[..]);
5234 ///
5235 /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 6, 7]);
5236 /// ```
5237 ///
5238 /// If too many or too few target bytes are provided, `write_to` returns
5239 /// `Err` and leaves the target bytes unmodified:
5240 ///
5241 /// ```
5242 /// # use zerocopy::IntoBytes;
5243 /// # let header = u128::MAX;
5244 /// let mut excessive_bytes = &mut [0u8; 128][..];
5245 ///
5246 /// let write_result = header.write_to(excessive_bytes);
5247 ///
5248 /// assert!(write_result.is_err());
5249 /// assert_eq!(excessive_bytes, [0u8; 128]);
5250 /// ```
5251 #[must_use = "callers should check the return value to see if the operation succeeded"]
5252 #[inline]
5253 #[allow(clippy::mut_from_ref)] // False positive: `&self -> &mut [u8]`
5254 fn write_to(&self, dst: &mut [u8]) -> Result<(), SizeError<&Self, &mut [u8]>>
5255 where
5256 Self: Immutable,
5257 {
5258 let src = self.as_bytes();
5259 if dst.len() == src.len() {
5260 // SAFETY: Within this branch of the conditional, we have ensured
5261 // that `dst.len()` is equal to `src.len()`. Neither the size of the
5262 // source nor the size of the destination change between the above
5263 // size check and the invocation of `copy_unchecked`.
5264 unsafe { util::copy_unchecked(src, dst) }
5265 Ok(())
5266 } else {
5267 Err(SizeError::new(self))
5268 }
5269 }
5270
5271 /// Writes a copy of `self` to the prefix of `dst`.
5272 ///
5273 /// `write_to_prefix` writes `self` to the first `size_of_val(self)` bytes
5274 /// of `dst`. If `dst.len() < size_of_val(self)`, it returns `Err`.
5275 ///
5276 /// # Examples
5277 ///
5278 /// ```
5279 /// use zerocopy::IntoBytes;
5280 /// # use zerocopy_derive::*;
5281 ///
5282 /// #[derive(IntoBytes, Immutable)]
5283 /// #[repr(C)]
5284 /// struct PacketHeader {
5285 /// src_port: [u8; 2],
5286 /// dst_port: [u8; 2],
5287 /// length: [u8; 2],
5288 /// checksum: [u8; 2],
5289 /// }
5290 ///
5291 /// let header = PacketHeader {
5292 /// src_port: [0, 1],
5293 /// dst_port: [2, 3],
5294 /// length: [4, 5],
5295 /// checksum: [6, 7],
5296 /// };
5297 ///
5298 /// let mut bytes = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
5299 ///
5300 /// header.write_to_prefix(&mut bytes[..]);
5301 ///
5302 /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 6, 7, 0, 0]);
5303 /// ```
5304 ///
5305 /// If insufficient target bytes are provided, `write_to_prefix` returns
5306 /// `Err` and leaves the target bytes unmodified:
5307 ///
5308 /// ```
5309 /// # use zerocopy::IntoBytes;
5310 /// # let header = u128::MAX;
5311 /// let mut insufficient_bytes = &mut [0, 0][..];
5312 ///
5313 /// let write_result = header.write_to_suffix(insufficient_bytes);
5314 ///
5315 /// assert!(write_result.is_err());
5316 /// assert_eq!(insufficient_bytes, [0, 0]);
5317 /// ```
5318 #[must_use = "callers should check the return value to see if the operation succeeded"]
5319 #[inline]
5320 #[allow(clippy::mut_from_ref)] // False positive: `&self -> &mut [u8]`
5321 fn write_to_prefix(&self, dst: &mut [u8]) -> Result<(), SizeError<&Self, &mut [u8]>>
5322 where
5323 Self: Immutable,
5324 {
5325 let src = self.as_bytes();
5326 match dst.get_mut(..src.len()) {
5327 Some(dst) => {
5328 // SAFETY: Within this branch of the `match`, we have ensured
5329 // through fallible subslicing that `dst.len()` is equal to
5330 // `src.len()`. Neither the size of the source nor the size of
5331 // the destination change between the above subslicing operation
5332 // and the invocation of `copy_unchecked`.
5333 unsafe { util::copy_unchecked(src, dst) }
5334 Ok(())
5335 }
5336 None => Err(SizeError::new(self)),
5337 }
5338 }
5339
5340 /// Writes a copy of `self` to the suffix of `dst`.
5341 ///
5342 /// `write_to_suffix` writes `self` to the last `size_of_val(self)` bytes of
5343 /// `dst`. If `dst.len() < size_of_val(self)`, it returns `Err`.
5344 ///
5345 /// # Examples
5346 ///
5347 /// ```
5348 /// use zerocopy::IntoBytes;
5349 /// # use zerocopy_derive::*;
5350 ///
5351 /// #[derive(IntoBytes, Immutable)]
5352 /// #[repr(C)]
5353 /// struct PacketHeader {
5354 /// src_port: [u8; 2],
5355 /// dst_port: [u8; 2],
5356 /// length: [u8; 2],
5357 /// checksum: [u8; 2],
5358 /// }
5359 ///
5360 /// let header = PacketHeader {
5361 /// src_port: [0, 1],
5362 /// dst_port: [2, 3],
5363 /// length: [4, 5],
5364 /// checksum: [6, 7],
5365 /// };
5366 ///
5367 /// let mut bytes = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
5368 ///
5369 /// header.write_to_suffix(&mut bytes[..]);
5370 ///
5371 /// assert_eq!(bytes, [0, 0, 0, 1, 2, 3, 4, 5, 6, 7]);
5372 ///
5373 /// let mut insufficient_bytes = &mut [0, 0][..];
5374 ///
5375 /// let write_result = header.write_to_suffix(insufficient_bytes);
5376 ///
5377 /// assert!(write_result.is_err());
5378 /// assert_eq!(insufficient_bytes, [0, 0]);
5379 /// ```
5380 ///
5381 /// If insufficient target bytes are provided, `write_to_suffix` returns
5382 /// `Err` and leaves the target bytes unmodified:
5383 ///
5384 /// ```
5385 /// # use zerocopy::IntoBytes;
5386 /// # let header = u128::MAX;
5387 /// let mut insufficient_bytes = &mut [0, 0][..];
5388 ///
5389 /// let write_result = header.write_to_suffix(insufficient_bytes);
5390 ///
5391 /// assert!(write_result.is_err());
5392 /// assert_eq!(insufficient_bytes, [0, 0]);
5393 /// ```
5394 #[must_use = "callers should check the return value to see if the operation succeeded"]
5395 #[inline]
5396 #[allow(clippy::mut_from_ref)] // False positive: `&self -> &mut [u8]`
5397 fn write_to_suffix(&self, dst: &mut [u8]) -> Result<(), SizeError<&Self, &mut [u8]>>
5398 where
5399 Self: Immutable,
5400 {
5401 let src = self.as_bytes();
5402 let start = if let Some(start) = dst.len().checked_sub(src.len()) {
5403 start
5404 } else {
5405 return Err(SizeError::new(self));
5406 };
5407 let dst = if let Some(dst) = dst.get_mut(start..) {
5408 dst
5409 } else {
5410 // get_mut() should never return None here. We return a `SizeError`
5411 // rather than .unwrap() because in the event the branch is not
5412 // optimized away, returning a value is generally lighter-weight
5413 // than panicking.
5414 return Err(SizeError::new(self));
5415 };
5416 // SAFETY: Through fallible subslicing of `dst`, we have ensured that
5417 // `dst.len()` is equal to `src.len()`. Neither the size of the source
5418 // nor the size of the destination change between the above subslicing
5419 // operation and the invocation of `copy_unchecked`.
5420 unsafe {
5421 util::copy_unchecked(src, dst);
5422 }
5423 Ok(())
5424 }
5425
5426 /// Writes a copy of `self` to an `io::Write`.
5427 ///
5428 /// This is a shorthand for `dst.write_all(self.as_bytes())`, and is useful
5429 /// for interfacing with operating system byte sinks (files, sockets, etc.).
5430 ///
5431 /// # Examples
5432 ///
5433 /// ```no_run
5434 /// use zerocopy::{byteorder::big_endian::U16, FromBytes, IntoBytes};
5435 /// use std::fs::File;
5436 /// # use zerocopy_derive::*;
5437 ///
5438 /// #[derive(FromBytes, IntoBytes, Immutable, KnownLayout)]
5439 /// #[repr(C, packed)]
5440 /// struct GrayscaleImage {
5441 /// height: U16,
5442 /// width: U16,
5443 /// pixels: [U16],
5444 /// }
5445 ///
5446 /// let image = GrayscaleImage::ref_from_bytes(&[0, 0, 0, 0][..]).unwrap();
5447 /// let mut file = File::create("image.bin").unwrap();
5448 /// image.write_to_io(&mut file).unwrap();
5449 /// ```
5450 ///
5451 /// If the write fails, `write_to_io` returns `Err` and a partial write may
5452 /// have occurred; e.g.:
5453 ///
5454 /// ```
5455 /// # use zerocopy::IntoBytes;
5456 ///
5457 /// let src = u128::MAX;
5458 /// let mut dst = [0u8; 2];
5459 ///
5460 /// let write_result = src.write_to_io(&mut dst[..]);
5461 ///
5462 /// assert!(write_result.is_err());
5463 /// assert_eq!(dst, [255, 255]);
5464 /// ```
5465 #[cfg(feature = "std")]
5466 #[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
5467 #[inline(always)]
5468 fn write_to_io<W>(&self, mut dst: W) -> io::Result<()>
5469 where
5470 Self: Immutable,
5471 W: io::Write,
5472 {
5473 dst.write_all(self.as_bytes())
5474 }
5475
5476 #[deprecated(since = "0.8.0", note = "`IntoBytes::as_bytes_mut` was renamed to `as_mut_bytes`")]
5477 #[doc(hidden)]
5478 #[inline]
5479 fn as_bytes_mut(&mut self) -> &mut [u8]
5480 where
5481 Self: FromBytes,
5482 {
5483 self.as_mut_bytes()
5484 }
5485}
5486
5487/// Analyzes whether a type is [`Unaligned`].
5488///
5489/// This derive analyzes, at compile time, whether the annotated type satisfies
5490/// the [safety conditions] of `Unaligned` and implements `Unaligned` if it is
5491/// sound to do so. This derive can be applied to structs, enums, and unions;
5492/// e.g.:
5493///
5494/// ```
5495/// # use zerocopy_derive::Unaligned;
5496/// #[derive(Unaligned)]
5497/// #[repr(C)]
5498/// struct MyStruct {
5499/// # /*
5500/// ...
5501/// # */
5502/// }
5503///
5504/// #[derive(Unaligned)]
5505/// #[repr(u8)]
5506/// enum MyEnum {
5507/// # Variant0,
5508/// # /*
5509/// ...
5510/// # */
5511/// }
5512///
5513/// #[derive(Unaligned)]
5514/// #[repr(packed)]
5515/// union MyUnion {
5516/// # variant: u8,
5517/// # /*
5518/// ...
5519/// # */
5520/// }
5521/// ```
5522///
5523/// # Analysis
5524///
5525/// *This section describes, roughly, the analysis performed by this derive to
5526/// determine whether it is sound to implement `Unaligned` for a given type.
5527/// Unless you are modifying the implementation of this derive, or attempting to
5528/// manually implement `Unaligned` for a type yourself, you don't need to read
5529/// this section.*
5530///
5531/// If a type has the following properties, then this derive can implement
5532/// `Unaligned` for that type:
5533///
5534/// - If the type is a struct or union:
5535/// - If `repr(align(N))` is provided, `N` must equal 1.
5536/// - If the type is `repr(C)` or `repr(transparent)`, all fields must be
5537/// [`Unaligned`].
5538/// - If the type is not `repr(C)` or `repr(transparent)`, it must be
5539/// `repr(packed)` or `repr(packed(1))`.
5540/// - If the type is an enum:
5541/// - If `repr(align(N))` is provided, `N` must equal 1.
5542/// - It must be a field-less enum (meaning that all variants have no fields).
5543/// - It must be `repr(i8)` or `repr(u8)`.
5544///
5545/// [safety conditions]: trait@Unaligned#safety
5546#[cfg(any(feature = "derive", test))]
5547#[cfg_attr(doc_cfg, doc(cfg(feature = "derive")))]
5548pub use zerocopy_derive::Unaligned;
5549
5550/// Types with no alignment requirement.
5551///
5552/// If `T: Unaligned`, then `align_of::<T>() == 1`.
5553///
5554/// # Implementation
5555///
5556/// **Do not implement this trait yourself!** Instead, use
5557/// [`#[derive(Unaligned)]`][derive]; e.g.:
5558///
5559/// ```
5560/// # use zerocopy_derive::Unaligned;
5561/// #[derive(Unaligned)]
5562/// #[repr(C)]
5563/// struct MyStruct {
5564/// # /*
5565/// ...
5566/// # */
5567/// }
5568///
5569/// #[derive(Unaligned)]
5570/// #[repr(u8)]
5571/// enum MyEnum {
5572/// # Variant0,
5573/// # /*
5574/// ...
5575/// # */
5576/// }
5577///
5578/// #[derive(Unaligned)]
5579/// #[repr(packed)]
5580/// union MyUnion {
5581/// # variant: u8,
5582/// # /*
5583/// ...
5584/// # */
5585/// }
5586/// ```
5587///
5588/// This derive performs a sophisticated, compile-time safety analysis to
5589/// determine whether a type is `Unaligned`.
5590///
5591/// # Safety
5592///
5593/// *This section describes what is required in order for `T: Unaligned`, and
5594/// what unsafe code may assume of such types. If you don't plan on implementing
5595/// `Unaligned` manually, and you don't plan on writing unsafe code that
5596/// operates on `Unaligned` types, then you don't need to read this section.*
5597///
5598/// If `T: Unaligned`, then unsafe code may assume that it is sound to produce a
5599/// reference to `T` at any memory location regardless of alignment. If a type
5600/// is marked as `Unaligned` which violates this contract, it may cause
5601/// undefined behavior.
5602///
5603/// `#[derive(Unaligned)]` only permits [types which satisfy these
5604/// requirements][derive-analysis].
5605///
5606#[cfg_attr(
5607 feature = "derive",
5608 doc = "[derive]: zerocopy_derive::Unaligned",
5609 doc = "[derive-analysis]: zerocopy_derive::Unaligned#analysis"
5610)]
5611#[cfg_attr(
5612 not(feature = "derive"),
5613 doc = concat!("[derive]: https://docs.rs/zerocopy/", env!("CARGO_PKG_VERSION"), "/zerocopy/derive.Unaligned.html"),
5614 doc = concat!("[derive-analysis]: https://docs.rs/zerocopy/", env!("CARGO_PKG_VERSION"), "/zerocopy/derive.Unaligned.html#analysis"),
5615)]
5616#[cfg_attr(
5617 not(no_zerocopy_diagnostic_on_unimplemented_1_78_0),
5618 diagnostic::on_unimplemented(note = "Consider adding `#[derive(Unaligned)]` to `{Self}`")
5619)]
5620pub unsafe trait Unaligned {
5621 // The `Self: Sized` bound makes it so that `Unaligned` is still object
5622 // safe.
5623 #[doc(hidden)]
5624 fn only_derive_is_allowed_to_implement_this_trait()
5625 where
5626 Self: Sized;
5627}
5628
5629/// Derives optimized [`PartialEq`] and [`Eq`] implementations.
5630///
5631/// This derive can be applied to structs and enums implementing both
5632/// [`Immutable`] and [`IntoBytes`]; e.g.:
5633///
5634/// ```
5635/// # use zerocopy_derive::{ByteEq, Immutable, IntoBytes};
5636/// #[derive(ByteEq, Immutable, IntoBytes)]
5637/// #[repr(C)]
5638/// struct MyStruct {
5639/// # /*
5640/// ...
5641/// # */
5642/// }
5643///
5644/// #[derive(ByteEq, Immutable, IntoBytes)]
5645/// #[repr(u8)]
5646/// enum MyEnum {
5647/// # Variant,
5648/// # /*
5649/// ...
5650/// # */
5651/// }
5652/// ```
5653///
5654/// The standard library's [`derive(Eq, PartialEq)`][derive@PartialEq] computes
5655/// equality by individually comparing each field. Instead, the implementation
5656/// of [`PartialEq::eq`] emitted by `derive(ByteHash)` converts the entirety of
5657/// `self` and `other` to byte slices and compares those slices for equality.
5658/// This may have performance advantages.
5659#[cfg(any(feature = "derive", test))]
5660#[cfg_attr(doc_cfg, doc(cfg(feature = "derive")))]
5661pub use zerocopy_derive::ByteEq;
5662/// Derives an optimized [`Hash`] implementation.
5663///
5664/// This derive can be applied to structs and enums implementing both
5665/// [`Immutable`] and [`IntoBytes`]; e.g.:
5666///
5667/// ```
5668/// # use zerocopy_derive::{ByteHash, Immutable, IntoBytes};
5669/// #[derive(ByteHash, Immutable, IntoBytes)]
5670/// #[repr(C)]
5671/// struct MyStruct {
5672/// # /*
5673/// ...
5674/// # */
5675/// }
5676///
5677/// #[derive(ByteHash, Immutable, IntoBytes)]
5678/// #[repr(u8)]
5679/// enum MyEnum {
5680/// # Variant,
5681/// # /*
5682/// ...
5683/// # */
5684/// }
5685/// ```
5686///
5687/// The standard library's [`derive(Hash)`][derive@Hash] produces hashes by
5688/// individually hashing each field and combining the results. Instead, the
5689/// implementations of [`Hash::hash()`] and [`Hash::hash_slice()`] generated by
5690/// `derive(ByteHash)` convert the entirety of `self` to a byte slice and hashes
5691/// it in a single call to [`Hasher::write()`]. This may have performance
5692/// advantages.
5693///
5694/// [`Hash`]: core::hash::Hash
5695/// [`Hash::hash()`]: core::hash::Hash::hash()
5696/// [`Hash::hash_slice()`]: core::hash::Hash::hash_slice()
5697#[cfg(any(feature = "derive", test))]
5698#[cfg_attr(doc_cfg, doc(cfg(feature = "derive")))]
5699pub use zerocopy_derive::ByteHash;
5700/// Implements [`SplitAt`].
5701///
5702/// This derive can be applied to structs; e.g.:
5703///
5704/// ```
5705/// # use zerocopy_derive::{ByteEq, Immutable, IntoBytes};
5706/// #[derive(ByteEq, Immutable, IntoBytes)]
5707/// #[repr(C)]
5708/// struct MyStruct {
5709/// # /*
5710/// ...
5711/// # */
5712/// }
5713/// ```
5714#[cfg(any(feature = "derive", test))]
5715#[cfg_attr(doc_cfg, doc(cfg(feature = "derive")))]
5716pub use zerocopy_derive::SplitAt;
5717
5718#[cfg(feature = "alloc")]
5719#[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))]
5720#[cfg(not(no_zerocopy_panic_in_const_and_vec_try_reserve_1_57_0))]
5721mod alloc_support {
5722 use super::*;
5723
5724 /// Extends a `Vec<T>` by pushing `additional` new items onto the end of the
5725 /// vector. The new items are initialized with zeros.
5726 #[cfg(not(no_zerocopy_panic_in_const_and_vec_try_reserve_1_57_0))]
5727 #[doc(hidden)]
5728 #[deprecated(since = "0.8.0", note = "moved to `FromZeros`")]
5729 #[inline(always)]
5730 pub fn extend_vec_zeroed<T: FromZeros>(
5731 v: &mut Vec<T>,
5732 additional: usize,
5733 ) -> Result<(), AllocError> {
5734 <T as FromZeros>::extend_vec_zeroed(v, additional)
5735 }
5736
5737 /// Inserts `additional` new items into `Vec<T>` at `position`. The new
5738 /// items are initialized with zeros.
5739 ///
5740 /// # Panics
5741 ///
5742 /// Panics if `position > v.len()`.
5743 #[cfg(not(no_zerocopy_panic_in_const_and_vec_try_reserve_1_57_0))]
5744 #[doc(hidden)]
5745 #[deprecated(since = "0.8.0", note = "moved to `FromZeros`")]
5746 #[inline(always)]
5747 pub fn insert_vec_zeroed<T: FromZeros>(
5748 v: &mut Vec<T>,
5749 position: usize,
5750 additional: usize,
5751 ) -> Result<(), AllocError> {
5752 <T as FromZeros>::insert_vec_zeroed(v, position, additional)
5753 }
5754}
5755
5756#[cfg(feature = "alloc")]
5757#[cfg(not(no_zerocopy_panic_in_const_and_vec_try_reserve_1_57_0))]
5758#[doc(hidden)]
5759pub use alloc_support::*;
5760
5761#[cfg(test)]
5762#[allow(clippy::assertions_on_result_states, clippy::unreadable_literal)]
5763mod tests {
5764 use static_assertions::assert_impl_all;
5765
5766 use super::*;
5767 use crate::util::testutil::*;
5768
5769 // An unsized type.
5770 //
5771 // This is used to test the custom derives of our traits. The `[u8]` type
5772 // gets a hand-rolled impl, so it doesn't exercise our custom derives.
5773 #[derive(Debug, Eq, PartialEq, FromBytes, IntoBytes, Unaligned, Immutable)]
5774 #[repr(transparent)]
5775 struct Unsized([u8]);
5776
5777 impl Unsized {
5778 fn from_mut_slice(slc: &mut [u8]) -> &mut Unsized {
5779 // SAFETY: This *probably* sound - since the layouts of `[u8]` and
5780 // `Unsized` are the same, so are the layouts of `&mut [u8]` and
5781 // `&mut Unsized`. [1] Even if it turns out that this isn't actually
5782 // guaranteed by the language spec, we can just change this since
5783 // it's in test code.
5784 //
5785 // [1] https://github.com/rust-lang/unsafe-code-guidelines/issues/375
5786 unsafe { mem::transmute(slc) }
5787 }
5788 }
5789
5790 #[test]
5791 fn test_known_layout() {
5792 // Test that `$ty` and `ManuallyDrop<$ty>` have the expected layout.
5793 // Test that `PhantomData<$ty>` has the same layout as `()` regardless
5794 // of `$ty`.
5795 macro_rules! test {
5796 ($ty:ty, $expect:expr) => {
5797 let expect = $expect;
5798 assert_eq!(<$ty as KnownLayout>::LAYOUT, expect);
5799 assert_eq!(<ManuallyDrop<$ty> as KnownLayout>::LAYOUT, expect);
5800 assert_eq!(<PhantomData<$ty> as KnownLayout>::LAYOUT, <() as KnownLayout>::LAYOUT);
5801 };
5802 }
5803
5804 let layout =
5805 |offset, align, trailing_slice_elem_size, statically_shallow_unpadded| DstLayout {
5806 align: NonZeroUsize::new(align).unwrap(),
5807 size_info: match trailing_slice_elem_size {
5808 None => SizeInfo::Sized { size: offset },
5809 Some(elem_size) => {
5810 SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size })
5811 }
5812 },
5813 statically_shallow_unpadded,
5814 };
5815
5816 test!((), layout(0, 1, None, false));
5817 test!(u8, layout(1, 1, None, false));
5818 // Use `align_of` because `u64` alignment may be smaller than 8 on some
5819 // platforms.
5820 test!(u64, layout(8, mem::align_of::<u64>(), None, false));
5821 test!(AU64, layout(8, 8, None, false));
5822
5823 test!(Option<&'static ()>, usize::LAYOUT);
5824
5825 test!([()], layout(0, 1, Some(0), true));
5826 test!([u8], layout(0, 1, Some(1), true));
5827 test!(str, layout(0, 1, Some(1), true));
5828 }
5829
5830 #[cfg(feature = "derive")]
5831 #[test]
5832 fn test_known_layout_derive() {
5833 // In this and other files (`late_compile_pass.rs`,
5834 // `mid_compile_pass.rs`, and `struct.rs`), we test success and failure
5835 // modes of `derive(KnownLayout)` for the following combination of
5836 // properties:
5837 //
5838 // +------------+--------------------------------------+-----------+
5839 // | | trailing field properties | |
5840 // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name |
5841 // |------------+----------+----------------+----------+-----------|
5842 // | N | N | N | N | KL00 |
5843 // | N | N | N | Y | KL01 |
5844 // | N | N | Y | N | KL02 |
5845 // | N | N | Y | Y | KL03 |
5846 // | N | Y | N | N | KL04 |
5847 // | N | Y | N | Y | KL05 |
5848 // | N | Y | Y | N | KL06 |
5849 // | N | Y | Y | Y | KL07 |
5850 // | Y | N | N | N | KL08 |
5851 // | Y | N | N | Y | KL09 |
5852 // | Y | N | Y | N | KL10 |
5853 // | Y | N | Y | Y | KL11 |
5854 // | Y | Y | N | N | KL12 |
5855 // | Y | Y | N | Y | KL13 |
5856 // | Y | Y | Y | N | KL14 |
5857 // | Y | Y | Y | Y | KL15 |
5858 // +------------+----------+----------------+----------+-----------+
5859
5860 struct NotKnownLayout<T = ()> {
5861 _t: T,
5862 }
5863
5864 #[derive(KnownLayout)]
5865 #[repr(C)]
5866 struct AlignSize<const ALIGN: usize, const SIZE: usize>
5867 where
5868 elain::Align<ALIGN>: elain::Alignment,
5869 {
5870 _align: elain::Align<ALIGN>,
5871 size: [u8; SIZE],
5872 }
5873
5874 type AU16 = AlignSize<2, 2>;
5875 type AU32 = AlignSize<4, 4>;
5876
5877 fn _assert_kl<T: ?Sized + KnownLayout>(_: &T) {}
5878
5879 let sized_layout = |align, size| DstLayout {
5880 align: NonZeroUsize::new(align).unwrap(),
5881 size_info: SizeInfo::Sized { size },
5882 statically_shallow_unpadded: false,
5883 };
5884
5885 let unsized_layout = |align, elem_size, offset, statically_shallow_unpadded| DstLayout {
5886 align: NonZeroUsize::new(align).unwrap(),
5887 size_info: SizeInfo::SliceDst(TrailingSliceLayout { offset, elem_size }),
5888 statically_shallow_unpadded,
5889 };
5890
5891 // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name |
5892 // | N | N | N | Y | KL01 |
5893 #[allow(dead_code)]
5894 #[derive(KnownLayout)]
5895 struct KL01(NotKnownLayout<AU32>, NotKnownLayout<AU16>);
5896
5897 let expected = DstLayout::for_type::<KL01>();
5898
5899 assert_eq!(<KL01 as KnownLayout>::LAYOUT, expected);
5900 assert_eq!(<KL01 as KnownLayout>::LAYOUT, sized_layout(4, 8));
5901
5902 // ...with `align(N)`:
5903 #[allow(dead_code)]
5904 #[derive(KnownLayout)]
5905 #[repr(align(64))]
5906 struct KL01Align(NotKnownLayout<AU32>, NotKnownLayout<AU16>);
5907
5908 let expected = DstLayout::for_type::<KL01Align>();
5909
5910 assert_eq!(<KL01Align as KnownLayout>::LAYOUT, expected);
5911 assert_eq!(<KL01Align as KnownLayout>::LAYOUT, sized_layout(64, 64));
5912
5913 // ...with `packed`:
5914 #[allow(dead_code)]
5915 #[derive(KnownLayout)]
5916 #[repr(packed)]
5917 struct KL01Packed(NotKnownLayout<AU32>, NotKnownLayout<AU16>);
5918
5919 let expected = DstLayout::for_type::<KL01Packed>();
5920
5921 assert_eq!(<KL01Packed as KnownLayout>::LAYOUT, expected);
5922 assert_eq!(<KL01Packed as KnownLayout>::LAYOUT, sized_layout(1, 6));
5923
5924 // ...with `packed(N)`:
5925 #[allow(dead_code)]
5926 #[derive(KnownLayout)]
5927 #[repr(packed(2))]
5928 struct KL01PackedN(NotKnownLayout<AU32>, NotKnownLayout<AU16>);
5929
5930 assert_impl_all!(KL01PackedN: KnownLayout);
5931
5932 let expected = DstLayout::for_type::<KL01PackedN>();
5933
5934 assert_eq!(<KL01PackedN as KnownLayout>::LAYOUT, expected);
5935 assert_eq!(<KL01PackedN as KnownLayout>::LAYOUT, sized_layout(2, 6));
5936
5937 // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name |
5938 // | N | N | Y | Y | KL03 |
5939 #[allow(dead_code)]
5940 #[derive(KnownLayout)]
5941 struct KL03(NotKnownLayout, u8);
5942
5943 let expected = DstLayout::for_type::<KL03>();
5944
5945 assert_eq!(<KL03 as KnownLayout>::LAYOUT, expected);
5946 assert_eq!(<KL03 as KnownLayout>::LAYOUT, sized_layout(1, 1));
5947
5948 // ... with `align(N)`
5949 #[allow(dead_code)]
5950 #[derive(KnownLayout)]
5951 #[repr(align(64))]
5952 struct KL03Align(NotKnownLayout<AU32>, u8);
5953
5954 let expected = DstLayout::for_type::<KL03Align>();
5955
5956 assert_eq!(<KL03Align as KnownLayout>::LAYOUT, expected);
5957 assert_eq!(<KL03Align as KnownLayout>::LAYOUT, sized_layout(64, 64));
5958
5959 // ... with `packed`:
5960 #[allow(dead_code)]
5961 #[derive(KnownLayout)]
5962 #[repr(packed)]
5963 struct KL03Packed(NotKnownLayout<AU32>, u8);
5964
5965 let expected = DstLayout::for_type::<KL03Packed>();
5966
5967 assert_eq!(<KL03Packed as KnownLayout>::LAYOUT, expected);
5968 assert_eq!(<KL03Packed as KnownLayout>::LAYOUT, sized_layout(1, 5));
5969
5970 // ... with `packed(N)`
5971 #[allow(dead_code)]
5972 #[derive(KnownLayout)]
5973 #[repr(packed(2))]
5974 struct KL03PackedN(NotKnownLayout<AU32>, u8);
5975
5976 assert_impl_all!(KL03PackedN: KnownLayout);
5977
5978 let expected = DstLayout::for_type::<KL03PackedN>();
5979
5980 assert_eq!(<KL03PackedN as KnownLayout>::LAYOUT, expected);
5981 assert_eq!(<KL03PackedN as KnownLayout>::LAYOUT, sized_layout(2, 6));
5982
5983 // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name |
5984 // | N | Y | N | Y | KL05 |
5985 #[allow(dead_code)]
5986 #[derive(KnownLayout)]
5987 struct KL05<T>(u8, T);
5988
5989 fn _test_kl05<T>(t: T) -> impl KnownLayout {
5990 KL05(0u8, t)
5991 }
5992
5993 // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name |
5994 // | N | Y | Y | Y | KL07 |
5995 #[allow(dead_code)]
5996 #[derive(KnownLayout)]
5997 struct KL07<T: KnownLayout>(u8, T);
5998
5999 fn _test_kl07<T: KnownLayout>(t: T) -> impl KnownLayout {
6000 let _ = KL07(0u8, t);
6001 }
6002
6003 // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name |
6004 // | Y | N | Y | N | KL10 |
6005 #[allow(dead_code)]
6006 #[derive(KnownLayout)]
6007 #[repr(C)]
6008 struct KL10(NotKnownLayout<AU32>, [u8]);
6009
6010 let expected = DstLayout::new_zst(None)
6011 .extend(DstLayout::for_type::<NotKnownLayout<AU32>>(), None)
6012 .extend(<[u8] as KnownLayout>::LAYOUT, None)
6013 .pad_to_align();
6014
6015 assert_eq!(<KL10 as KnownLayout>::LAYOUT, expected);
6016 assert_eq!(<KL10 as KnownLayout>::LAYOUT, unsized_layout(4, 1, 4, false));
6017
6018 // ...with `align(N)`:
6019 #[allow(dead_code)]
6020 #[derive(KnownLayout)]
6021 #[repr(C, align(64))]
6022 struct KL10Align(NotKnownLayout<AU32>, [u8]);
6023
6024 let repr_align = NonZeroUsize::new(64);
6025
6026 let expected = DstLayout::new_zst(repr_align)
6027 .extend(DstLayout::for_type::<NotKnownLayout<AU32>>(), None)
6028 .extend(<[u8] as KnownLayout>::LAYOUT, None)
6029 .pad_to_align();
6030
6031 assert_eq!(<KL10Align as KnownLayout>::LAYOUT, expected);
6032 assert_eq!(<KL10Align as KnownLayout>::LAYOUT, unsized_layout(64, 1, 4, false));
6033
6034 // ...with `packed`:
6035 #[allow(dead_code)]
6036 #[derive(KnownLayout)]
6037 #[repr(C, packed)]
6038 struct KL10Packed(NotKnownLayout<AU32>, [u8]);
6039
6040 let repr_packed = NonZeroUsize::new(1);
6041
6042 let expected = DstLayout::new_zst(None)
6043 .extend(DstLayout::for_type::<NotKnownLayout<AU32>>(), repr_packed)
6044 .extend(<[u8] as KnownLayout>::LAYOUT, repr_packed)
6045 .pad_to_align();
6046
6047 assert_eq!(<KL10Packed as KnownLayout>::LAYOUT, expected);
6048 assert_eq!(<KL10Packed as KnownLayout>::LAYOUT, unsized_layout(1, 1, 4, false));
6049
6050 // ...with `packed(N)`:
6051 #[allow(dead_code)]
6052 #[derive(KnownLayout)]
6053 #[repr(C, packed(2))]
6054 struct KL10PackedN(NotKnownLayout<AU32>, [u8]);
6055
6056 let repr_packed = NonZeroUsize::new(2);
6057
6058 let expected = DstLayout::new_zst(None)
6059 .extend(DstLayout::for_type::<NotKnownLayout<AU32>>(), repr_packed)
6060 .extend(<[u8] as KnownLayout>::LAYOUT, repr_packed)
6061 .pad_to_align();
6062
6063 assert_eq!(<KL10PackedN as KnownLayout>::LAYOUT, expected);
6064 assert_eq!(<KL10PackedN as KnownLayout>::LAYOUT, unsized_layout(2, 1, 4, false));
6065
6066 // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name |
6067 // | Y | N | Y | Y | KL11 |
6068 #[allow(dead_code)]
6069 #[derive(KnownLayout)]
6070 #[repr(C)]
6071 struct KL11(NotKnownLayout<AU64>, u8);
6072
6073 let expected = DstLayout::new_zst(None)
6074 .extend(DstLayout::for_type::<NotKnownLayout<AU64>>(), None)
6075 .extend(<u8 as KnownLayout>::LAYOUT, None)
6076 .pad_to_align();
6077
6078 assert_eq!(<KL11 as KnownLayout>::LAYOUT, expected);
6079 assert_eq!(<KL11 as KnownLayout>::LAYOUT, sized_layout(8, 16));
6080
6081 // ...with `align(N)`:
6082 #[allow(dead_code)]
6083 #[derive(KnownLayout)]
6084 #[repr(C, align(64))]
6085 struct KL11Align(NotKnownLayout<AU64>, u8);
6086
6087 let repr_align = NonZeroUsize::new(64);
6088
6089 let expected = DstLayout::new_zst(repr_align)
6090 .extend(DstLayout::for_type::<NotKnownLayout<AU64>>(), None)
6091 .extend(<u8 as KnownLayout>::LAYOUT, None)
6092 .pad_to_align();
6093
6094 assert_eq!(<KL11Align as KnownLayout>::LAYOUT, expected);
6095 assert_eq!(<KL11Align as KnownLayout>::LAYOUT, sized_layout(64, 64));
6096
6097 // ...with `packed`:
6098 #[allow(dead_code)]
6099 #[derive(KnownLayout)]
6100 #[repr(C, packed)]
6101 struct KL11Packed(NotKnownLayout<AU64>, u8);
6102
6103 let repr_packed = NonZeroUsize::new(1);
6104
6105 let expected = DstLayout::new_zst(None)
6106 .extend(DstLayout::for_type::<NotKnownLayout<AU64>>(), repr_packed)
6107 .extend(<u8 as KnownLayout>::LAYOUT, repr_packed)
6108 .pad_to_align();
6109
6110 assert_eq!(<KL11Packed as KnownLayout>::LAYOUT, expected);
6111 assert_eq!(<KL11Packed as KnownLayout>::LAYOUT, sized_layout(1, 9));
6112
6113 // ...with `packed(N)`:
6114 #[allow(dead_code)]
6115 #[derive(KnownLayout)]
6116 #[repr(C, packed(2))]
6117 struct KL11PackedN(NotKnownLayout<AU64>, u8);
6118
6119 let repr_packed = NonZeroUsize::new(2);
6120
6121 let expected = DstLayout::new_zst(None)
6122 .extend(DstLayout::for_type::<NotKnownLayout<AU64>>(), repr_packed)
6123 .extend(<u8 as KnownLayout>::LAYOUT, repr_packed)
6124 .pad_to_align();
6125
6126 assert_eq!(<KL11PackedN as KnownLayout>::LAYOUT, expected);
6127 assert_eq!(<KL11PackedN as KnownLayout>::LAYOUT, sized_layout(2, 10));
6128
6129 // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name |
6130 // | Y | Y | Y | N | KL14 |
6131 #[allow(dead_code)]
6132 #[derive(KnownLayout)]
6133 #[repr(C)]
6134 struct KL14<T: ?Sized + KnownLayout>(u8, T);
6135
6136 fn _test_kl14<T: ?Sized + KnownLayout>(kl: &KL14<T>) {
6137 _assert_kl(kl)
6138 }
6139
6140 // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name |
6141 // | Y | Y | Y | Y | KL15 |
6142 #[allow(dead_code)]
6143 #[derive(KnownLayout)]
6144 #[repr(C)]
6145 struct KL15<T: KnownLayout>(u8, T);
6146
6147 fn _test_kl15<T: KnownLayout>(t: T) -> impl KnownLayout {
6148 let _ = KL15(0u8, t);
6149 }
6150
6151 // Test a variety of combinations of field types:
6152 // - ()
6153 // - u8
6154 // - AU16
6155 // - [()]
6156 // - [u8]
6157 // - [AU16]
6158
6159 #[allow(clippy::upper_case_acronyms, dead_code)]
6160 #[derive(KnownLayout)]
6161 #[repr(C)]
6162 struct KLTU<T, U: ?Sized>(T, U);
6163
6164 assert_eq!(<KLTU<(), ()> as KnownLayout>::LAYOUT, sized_layout(1, 0));
6165
6166 assert_eq!(<KLTU<(), u8> as KnownLayout>::LAYOUT, sized_layout(1, 1));
6167
6168 assert_eq!(<KLTU<(), AU16> as KnownLayout>::LAYOUT, sized_layout(2, 2));
6169
6170 assert_eq!(<KLTU<(), [()]> as KnownLayout>::LAYOUT, unsized_layout(1, 0, 0, false));
6171
6172 assert_eq!(<KLTU<(), [u8]> as KnownLayout>::LAYOUT, unsized_layout(1, 1, 0, false));
6173
6174 assert_eq!(<KLTU<(), [AU16]> as KnownLayout>::LAYOUT, unsized_layout(2, 2, 0, false));
6175
6176 assert_eq!(<KLTU<u8, ()> as KnownLayout>::LAYOUT, sized_layout(1, 1));
6177
6178 assert_eq!(<KLTU<u8, u8> as KnownLayout>::LAYOUT, sized_layout(1, 2));
6179
6180 assert_eq!(<KLTU<u8, AU16> as KnownLayout>::LAYOUT, sized_layout(2, 4));
6181
6182 assert_eq!(<KLTU<u8, [()]> as KnownLayout>::LAYOUT, unsized_layout(1, 0, 1, false));
6183
6184 assert_eq!(<KLTU<u8, [u8]> as KnownLayout>::LAYOUT, unsized_layout(1, 1, 1, false));
6185
6186 assert_eq!(<KLTU<u8, [AU16]> as KnownLayout>::LAYOUT, unsized_layout(2, 2, 2, false));
6187
6188 assert_eq!(<KLTU<AU16, ()> as KnownLayout>::LAYOUT, sized_layout(2, 2));
6189
6190 assert_eq!(<KLTU<AU16, u8> as KnownLayout>::LAYOUT, sized_layout(2, 4));
6191
6192 assert_eq!(<KLTU<AU16, AU16> as KnownLayout>::LAYOUT, sized_layout(2, 4));
6193
6194 assert_eq!(<KLTU<AU16, [()]> as KnownLayout>::LAYOUT, unsized_layout(2, 0, 2, false));
6195
6196 assert_eq!(<KLTU<AU16, [u8]> as KnownLayout>::LAYOUT, unsized_layout(2, 1, 2, false));
6197
6198 assert_eq!(<KLTU<AU16, [AU16]> as KnownLayout>::LAYOUT, unsized_layout(2, 2, 2, false));
6199
6200 // Test a variety of field counts.
6201
6202 #[derive(KnownLayout)]
6203 #[repr(C)]
6204 struct KLF0;
6205
6206 assert_eq!(<KLF0 as KnownLayout>::LAYOUT, sized_layout(1, 0));
6207
6208 #[derive(KnownLayout)]
6209 #[repr(C)]
6210 struct KLF1([u8]);
6211
6212 assert_eq!(<KLF1 as KnownLayout>::LAYOUT, unsized_layout(1, 1, 0, true));
6213
6214 #[derive(KnownLayout)]
6215 #[repr(C)]
6216 struct KLF2(NotKnownLayout<u8>, [u8]);
6217
6218 assert_eq!(<KLF2 as KnownLayout>::LAYOUT, unsized_layout(1, 1, 1, false));
6219
6220 #[derive(KnownLayout)]
6221 #[repr(C)]
6222 struct KLF3(NotKnownLayout<u8>, NotKnownLayout<AU16>, [u8]);
6223
6224 assert_eq!(<KLF3 as KnownLayout>::LAYOUT, unsized_layout(2, 1, 4, false));
6225
6226 #[derive(KnownLayout)]
6227 #[repr(C)]
6228 struct KLF4(NotKnownLayout<u8>, NotKnownLayout<AU16>, NotKnownLayout<AU32>, [u8]);
6229
6230 assert_eq!(<KLF4 as KnownLayout>::LAYOUT, unsized_layout(4, 1, 8, false));
6231 }
6232
6233 #[test]
6234 fn test_object_safety() {
6235 fn _takes_no_cell(_: &dyn Immutable) {}
6236 fn _takes_unaligned(_: &dyn Unaligned) {}
6237 }
6238
6239 #[test]
6240 fn test_from_zeros_only() {
6241 // Test types that implement `FromZeros` but not `FromBytes`.
6242
6243 assert!(!bool::new_zeroed());
6244 assert_eq!(char::new_zeroed(), '\0');
6245
6246 #[cfg(feature = "alloc")]
6247 {
6248 assert_eq!(bool::new_box_zeroed(), Ok(Box::new(false)));
6249 assert_eq!(char::new_box_zeroed(), Ok(Box::new('\0')));
6250
6251 assert_eq!(
6252 <[bool]>::new_box_zeroed_with_elems(3).unwrap().as_ref(),
6253 [false, false, false]
6254 );
6255 assert_eq!(
6256 <[char]>::new_box_zeroed_with_elems(3).unwrap().as_ref(),
6257 ['\0', '\0', '\0']
6258 );
6259
6260 assert_eq!(bool::new_vec_zeroed(3).unwrap().as_ref(), [false, false, false]);
6261 assert_eq!(char::new_vec_zeroed(3).unwrap().as_ref(), ['\0', '\0', '\0']);
6262 }
6263
6264 let mut string = "hello".to_string();
6265 let s: &mut str = string.as_mut();
6266 assert_eq!(s, "hello");
6267 s.zero();
6268 assert_eq!(s, "\0\0\0\0\0");
6269 }
6270
6271 #[test]
6272 fn test_zst_count_preserved() {
6273 // Test that, when an explicit count is provided to for a type with a
6274 // ZST trailing slice element, that count is preserved. This is
6275 // important since, for such types, all element counts result in objects
6276 // of the same size, and so the correct behavior is ambiguous. However,
6277 // preserving the count as requested by the user is the behavior that we
6278 // document publicly.
6279
6280 // FromZeros methods
6281 #[cfg(feature = "alloc")]
6282 assert_eq!(<[()]>::new_box_zeroed_with_elems(3).unwrap().len(), 3);
6283 #[cfg(feature = "alloc")]
6284 assert_eq!(<()>::new_vec_zeroed(3).unwrap().len(), 3);
6285
6286 // FromBytes methods
6287 assert_eq!(<[()]>::ref_from_bytes_with_elems(&[][..], 3).unwrap().len(), 3);
6288 assert_eq!(<[()]>::ref_from_prefix_with_elems(&[][..], 3).unwrap().0.len(), 3);
6289 assert_eq!(<[()]>::ref_from_suffix_with_elems(&[][..], 3).unwrap().1.len(), 3);
6290 assert_eq!(<[()]>::mut_from_bytes_with_elems(&mut [][..], 3).unwrap().len(), 3);
6291 assert_eq!(<[()]>::mut_from_prefix_with_elems(&mut [][..], 3).unwrap().0.len(), 3);
6292 assert_eq!(<[()]>::mut_from_suffix_with_elems(&mut [][..], 3).unwrap().1.len(), 3);
6293 }
6294
6295 #[test]
6296 fn test_read_write() {
6297 const VAL: u64 = 0x12345678;
6298 #[cfg(target_endian = "big")]
6299 const VAL_BYTES: [u8; 8] = VAL.to_be_bytes();
6300 #[cfg(target_endian = "little")]
6301 const VAL_BYTES: [u8; 8] = VAL.to_le_bytes();
6302 const ZEROS: [u8; 8] = [0u8; 8];
6303
6304 // Test `FromBytes::{read_from, read_from_prefix, read_from_suffix}`.
6305
6306 assert_eq!(u64::read_from_bytes(&VAL_BYTES[..]), Ok(VAL));
6307 // The first 8 bytes are from `VAL_BYTES` and the second 8 bytes are all
6308 // zeros.
6309 let bytes_with_prefix: [u8; 16] = transmute!([VAL_BYTES, [0; 8]]);
6310 assert_eq!(u64::read_from_prefix(&bytes_with_prefix[..]), Ok((VAL, &ZEROS[..])));
6311 assert_eq!(u64::read_from_suffix(&bytes_with_prefix[..]), Ok((&VAL_BYTES[..], 0)));
6312 // The first 8 bytes are all zeros and the second 8 bytes are from
6313 // `VAL_BYTES`
6314 let bytes_with_suffix: [u8; 16] = transmute!([[0; 8], VAL_BYTES]);
6315 assert_eq!(u64::read_from_prefix(&bytes_with_suffix[..]), Ok((0, &VAL_BYTES[..])));
6316 assert_eq!(u64::read_from_suffix(&bytes_with_suffix[..]), Ok((&ZEROS[..], VAL)));
6317
6318 // Test `IntoBytes::{write_to, write_to_prefix, write_to_suffix}`.
6319
6320 let mut bytes = [0u8; 8];
6321 assert_eq!(VAL.write_to(&mut bytes[..]), Ok(()));
6322 assert_eq!(bytes, VAL_BYTES);
6323 let mut bytes = [0u8; 16];
6324 assert_eq!(VAL.write_to_prefix(&mut bytes[..]), Ok(()));
6325 let want: [u8; 16] = transmute!([VAL_BYTES, [0; 8]]);
6326 assert_eq!(bytes, want);
6327 let mut bytes = [0u8; 16];
6328 assert_eq!(VAL.write_to_suffix(&mut bytes[..]), Ok(()));
6329 let want: [u8; 16] = transmute!([[0; 8], VAL_BYTES]);
6330 assert_eq!(bytes, want);
6331 }
6332
6333 #[test]
6334 #[cfg(feature = "std")]
6335 fn test_read_io_with_padding_soundness() {
6336 // This test is designed to exhibit potential UB in
6337 // `FromBytes::read_from_io`. (see #2319, #2320).
6338
6339 // On most platforms (where `align_of::<u16>() == 2`), `WithPadding`
6340 // will have inter-field padding between `x` and `y`.
6341 #[derive(FromBytes)]
6342 #[repr(C)]
6343 struct WithPadding {
6344 x: u8,
6345 y: u16,
6346 }
6347 struct ReadsInRead;
6348 impl std::io::Read for ReadsInRead {
6349 fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
6350 // This body branches on every byte of `buf`, ensuring that it
6351 // exhibits UB if any byte of `buf` is uninitialized.
6352 if buf.iter().all(|&x| x == 0) {
6353 Ok(buf.len())
6354 } else {
6355 buf.iter_mut().for_each(|x| *x = 0);
6356 Ok(buf.len())
6357 }
6358 }
6359 }
6360 assert!(matches!(WithPadding::read_from_io(ReadsInRead), Ok(WithPadding { x: 0, y: 0 })));
6361 }
6362
6363 #[test]
6364 #[cfg(feature = "std")]
6365 fn test_read_write_io() {
6366 let mut long_buffer = [0, 0, 0, 0];
6367 assert!(matches!(u16::MAX.write_to_io(&mut long_buffer[..]), Ok(())));
6368 assert_eq!(long_buffer, [255, 255, 0, 0]);
6369 assert!(matches!(u16::read_from_io(&long_buffer[..]), Ok(u16::MAX)));
6370
6371 let mut short_buffer = [0, 0];
6372 assert!(u32::MAX.write_to_io(&mut short_buffer[..]).is_err());
6373 assert_eq!(short_buffer, [255, 255]);
6374 assert!(u32::read_from_io(&short_buffer[..]).is_err());
6375 }
6376
6377 #[test]
6378 fn test_try_from_bytes_try_read_from() {
6379 assert_eq!(<bool as TryFromBytes>::try_read_from_bytes(&[0]), Ok(false));
6380 assert_eq!(<bool as TryFromBytes>::try_read_from_bytes(&[1]), Ok(true));
6381
6382 assert_eq!(<bool as TryFromBytes>::try_read_from_prefix(&[0, 2]), Ok((false, &[2][..])));
6383 assert_eq!(<bool as TryFromBytes>::try_read_from_prefix(&[1, 2]), Ok((true, &[2][..])));
6384
6385 assert_eq!(<bool as TryFromBytes>::try_read_from_suffix(&[2, 0]), Ok((&[2][..], false)));
6386 assert_eq!(<bool as TryFromBytes>::try_read_from_suffix(&[2, 1]), Ok((&[2][..], true)));
6387
6388 // If we don't pass enough bytes, it fails.
6389 assert!(matches!(
6390 <u8 as TryFromBytes>::try_read_from_bytes(&[]),
6391 Err(TryReadError::Size(_))
6392 ));
6393 assert!(matches!(
6394 <u8 as TryFromBytes>::try_read_from_prefix(&[]),
6395 Err(TryReadError::Size(_))
6396 ));
6397 assert!(matches!(
6398 <u8 as TryFromBytes>::try_read_from_suffix(&[]),
6399 Err(TryReadError::Size(_))
6400 ));
6401
6402 // If we pass too many bytes, it fails.
6403 assert!(matches!(
6404 <u8 as TryFromBytes>::try_read_from_bytes(&[0, 0]),
6405 Err(TryReadError::Size(_))
6406 ));
6407
6408 // If we pass an invalid value, it fails.
6409 assert!(matches!(
6410 <bool as TryFromBytes>::try_read_from_bytes(&[2]),
6411 Err(TryReadError::Validity(_))
6412 ));
6413 assert!(matches!(
6414 <bool as TryFromBytes>::try_read_from_prefix(&[2, 0]),
6415 Err(TryReadError::Validity(_))
6416 ));
6417 assert!(matches!(
6418 <bool as TryFromBytes>::try_read_from_suffix(&[0, 2]),
6419 Err(TryReadError::Validity(_))
6420 ));
6421
6422 // Reading from a misaligned buffer should still succeed. Since `AU64`'s
6423 // alignment is 8, and since we read from two adjacent addresses one
6424 // byte apart, it is guaranteed that at least one of them (though
6425 // possibly both) will be misaligned.
6426 let bytes: [u8; 9] = [0, 0, 0, 0, 0, 0, 0, 0, 0];
6427 assert_eq!(<AU64 as TryFromBytes>::try_read_from_bytes(&bytes[..8]), Ok(AU64(0)));
6428 assert_eq!(<AU64 as TryFromBytes>::try_read_from_bytes(&bytes[1..9]), Ok(AU64(0)));
6429
6430 assert_eq!(
6431 <AU64 as TryFromBytes>::try_read_from_prefix(&bytes[..8]),
6432 Ok((AU64(0), &[][..]))
6433 );
6434 assert_eq!(
6435 <AU64 as TryFromBytes>::try_read_from_prefix(&bytes[1..9]),
6436 Ok((AU64(0), &[][..]))
6437 );
6438
6439 assert_eq!(
6440 <AU64 as TryFromBytes>::try_read_from_suffix(&bytes[..8]),
6441 Ok((&[][..], AU64(0)))
6442 );
6443 assert_eq!(
6444 <AU64 as TryFromBytes>::try_read_from_suffix(&bytes[1..9]),
6445 Ok((&[][..], AU64(0)))
6446 );
6447 }
6448
6449 #[test]
6450 fn test_ref_from_mut_from() {
6451 // Test `FromBytes::{ref_from, mut_from}{,_prefix,Suffix}` success cases
6452 // Exhaustive coverage for these methods is covered by the `Ref` tests above,
6453 // which these helper methods defer to.
6454
6455 let mut buf =
6456 Align::<[u8; 16], AU64>::new([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]);
6457
6458 assert_eq!(
6459 AU64::ref_from_bytes(&buf.t[8..]).unwrap().0.to_ne_bytes(),
6460 [8, 9, 10, 11, 12, 13, 14, 15]
6461 );
6462 let suffix = AU64::mut_from_bytes(&mut buf.t[8..]).unwrap();
6463 suffix.0 = 0x0101010101010101;
6464 // The `[u8:9]` is a non-half size of the full buffer, which would catch
6465 // `from_prefix` having the same implementation as `from_suffix` (issues #506, #511).
6466 assert_eq!(
6467 <[u8; 9]>::ref_from_suffix(&buf.t[..]).unwrap(),
6468 (&[0, 1, 2, 3, 4, 5, 6][..], &[7u8, 1, 1, 1, 1, 1, 1, 1, 1])
6469 );
6470 let (prefix, suffix) = AU64::mut_from_suffix(&mut buf.t[1..]).unwrap();
6471 assert_eq!(prefix, &mut [1u8, 2, 3, 4, 5, 6, 7][..]);
6472 suffix.0 = 0x0202020202020202;
6473 let (prefix, suffix) = <[u8; 10]>::mut_from_suffix(&mut buf.t[..]).unwrap();
6474 assert_eq!(prefix, &mut [0u8, 1, 2, 3, 4, 5][..]);
6475 suffix[0] = 42;
6476 assert_eq!(
6477 <[u8; 9]>::ref_from_prefix(&buf.t[..]).unwrap(),
6478 (&[0u8, 1, 2, 3, 4, 5, 42, 7, 2], &[2u8, 2, 2, 2, 2, 2, 2][..])
6479 );
6480 <[u8; 2]>::mut_from_prefix(&mut buf.t[..]).unwrap().0[1] = 30;
6481 assert_eq!(buf.t, [0, 30, 2, 3, 4, 5, 42, 7, 2, 2, 2, 2, 2, 2, 2, 2]);
6482 }
6483
6484 #[test]
6485 fn test_ref_from_mut_from_error() {
6486 // Test `FromBytes::{ref_from, mut_from}{,_prefix,Suffix}` error cases.
6487
6488 // Fail because the buffer is too large.
6489 let mut buf = Align::<[u8; 16], AU64>::default();
6490 // `buf.t` should be aligned to 8, so only the length check should fail.
6491 assert!(AU64::ref_from_bytes(&buf.t[..]).is_err());
6492 assert!(AU64::mut_from_bytes(&mut buf.t[..]).is_err());
6493 assert!(<[u8; 8]>::ref_from_bytes(&buf.t[..]).is_err());
6494 assert!(<[u8; 8]>::mut_from_bytes(&mut buf.t[..]).is_err());
6495
6496 // Fail because the buffer is too small.
6497 let mut buf = Align::<[u8; 4], AU64>::default();
6498 assert!(AU64::ref_from_bytes(&buf.t[..]).is_err());
6499 assert!(AU64::mut_from_bytes(&mut buf.t[..]).is_err());
6500 assert!(<[u8; 8]>::ref_from_bytes(&buf.t[..]).is_err());
6501 assert!(<[u8; 8]>::mut_from_bytes(&mut buf.t[..]).is_err());
6502 assert!(AU64::ref_from_prefix(&buf.t[..]).is_err());
6503 assert!(AU64::mut_from_prefix(&mut buf.t[..]).is_err());
6504 assert!(AU64::ref_from_suffix(&buf.t[..]).is_err());
6505 assert!(AU64::mut_from_suffix(&mut buf.t[..]).is_err());
6506 assert!(<[u8; 8]>::ref_from_prefix(&buf.t[..]).is_err());
6507 assert!(<[u8; 8]>::mut_from_prefix(&mut buf.t[..]).is_err());
6508 assert!(<[u8; 8]>::ref_from_suffix(&buf.t[..]).is_err());
6509 assert!(<[u8; 8]>::mut_from_suffix(&mut buf.t[..]).is_err());
6510
6511 // Fail because the alignment is insufficient.
6512 let mut buf = Align::<[u8; 13], AU64>::default();
6513 assert!(AU64::ref_from_bytes(&buf.t[1..]).is_err());
6514 assert!(AU64::mut_from_bytes(&mut buf.t[1..]).is_err());
6515 assert!(AU64::ref_from_bytes(&buf.t[1..]).is_err());
6516 assert!(AU64::mut_from_bytes(&mut buf.t[1..]).is_err());
6517 assert!(AU64::ref_from_prefix(&buf.t[1..]).is_err());
6518 assert!(AU64::mut_from_prefix(&mut buf.t[1..]).is_err());
6519 assert!(AU64::ref_from_suffix(&buf.t[..]).is_err());
6520 assert!(AU64::mut_from_suffix(&mut buf.t[..]).is_err());
6521 }
6522
6523 #[test]
6524 fn test_to_methods() {
6525 /// Run a series of tests by calling `IntoBytes` methods on `t`.
6526 ///
6527 /// `bytes` is the expected byte sequence returned from `t.as_bytes()`
6528 /// before `t` has been modified. `post_mutation` is the expected
6529 /// sequence returned from `t.as_bytes()` after `t.as_mut_bytes()[0]`
6530 /// has had its bits flipped (by applying `^= 0xFF`).
6531 ///
6532 /// `N` is the size of `t` in bytes.
6533 fn test<T: FromBytes + IntoBytes + Immutable + Debug + Eq + ?Sized, const N: usize>(
6534 t: &mut T,
6535 bytes: &[u8],
6536 post_mutation: &T,
6537 ) {
6538 // Test that we can access the underlying bytes, and that we get the
6539 // right bytes and the right number of bytes.
6540 assert_eq!(t.as_bytes(), bytes);
6541
6542 // Test that changes to the underlying byte slices are reflected in
6543 // the original object.
6544 t.as_mut_bytes()[0] ^= 0xFF;
6545 assert_eq!(t, post_mutation);
6546 t.as_mut_bytes()[0] ^= 0xFF;
6547
6548 // `write_to` rejects slices that are too small or too large.
6549 assert!(t.write_to(&mut vec![0; N - 1][..]).is_err());
6550 assert!(t.write_to(&mut vec![0; N + 1][..]).is_err());
6551
6552 // `write_to` works as expected.
6553 let mut bytes = [0; N];
6554 assert_eq!(t.write_to(&mut bytes[..]), Ok(()));
6555 assert_eq!(bytes, t.as_bytes());
6556
6557 // `write_to_prefix` rejects slices that are too small.
6558 assert!(t.write_to_prefix(&mut vec![0; N - 1][..]).is_err());
6559
6560 // `write_to_prefix` works with exact-sized slices.
6561 let mut bytes = [0; N];
6562 assert_eq!(t.write_to_prefix(&mut bytes[..]), Ok(()));
6563 assert_eq!(bytes, t.as_bytes());
6564
6565 // `write_to_prefix` works with too-large slices, and any bytes past
6566 // the prefix aren't modified.
6567 let mut too_many_bytes = vec![0; N + 1];
6568 too_many_bytes[N] = 123;
6569 assert_eq!(t.write_to_prefix(&mut too_many_bytes[..]), Ok(()));
6570 assert_eq!(&too_many_bytes[..N], t.as_bytes());
6571 assert_eq!(too_many_bytes[N], 123);
6572
6573 // `write_to_suffix` rejects slices that are too small.
6574 assert!(t.write_to_suffix(&mut vec![0; N - 1][..]).is_err());
6575
6576 // `write_to_suffix` works with exact-sized slices.
6577 let mut bytes = [0; N];
6578 assert_eq!(t.write_to_suffix(&mut bytes[..]), Ok(()));
6579 assert_eq!(bytes, t.as_bytes());
6580
6581 // `write_to_suffix` works with too-large slices, and any bytes
6582 // before the suffix aren't modified.
6583 let mut too_many_bytes = vec![0; N + 1];
6584 too_many_bytes[0] = 123;
6585 assert_eq!(t.write_to_suffix(&mut too_many_bytes[..]), Ok(()));
6586 assert_eq!(&too_many_bytes[1..], t.as_bytes());
6587 assert_eq!(too_many_bytes[0], 123);
6588 }
6589
6590 #[derive(Debug, Eq, PartialEq, FromBytes, IntoBytes, Immutable)]
6591 #[repr(C)]
6592 struct Foo {
6593 a: u32,
6594 b: Wrapping<u32>,
6595 c: Option<NonZeroU32>,
6596 }
6597
6598 let expected_bytes: Vec<u8> = if cfg!(target_endian = "little") {
6599 vec![1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0]
6600 } else {
6601 vec![0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0]
6602 };
6603 let post_mutation_expected_a =
6604 if cfg!(target_endian = "little") { 0x00_00_00_FE } else { 0xFF_00_00_01 };
6605 test::<_, 12>(
6606 &mut Foo { a: 1, b: Wrapping(2), c: None },
6607 expected_bytes.as_bytes(),
6608 &Foo { a: post_mutation_expected_a, b: Wrapping(2), c: None },
6609 );
6610 test::<_, 3>(
6611 Unsized::from_mut_slice(&mut [1, 2, 3]),
6612 &[1, 2, 3],
6613 Unsized::from_mut_slice(&mut [0xFE, 2, 3]),
6614 );
6615 }
6616
6617 #[test]
6618 fn test_array() {
6619 #[derive(FromBytes, IntoBytes, Immutable)]
6620 #[repr(C)]
6621 struct Foo {
6622 a: [u16; 33],
6623 }
6624
6625 let foo = Foo { a: [0xFFFF; 33] };
6626 let expected = [0xFFu8; 66];
6627 assert_eq!(foo.as_bytes(), &expected[..]);
6628 }
6629
6630 #[test]
6631 fn test_new_zeroed() {
6632 assert!(!bool::new_zeroed());
6633 assert_eq!(u64::new_zeroed(), 0);
6634 // This test exists in order to exercise unsafe code, especially when
6635 // running under Miri.
6636 #[allow(clippy::unit_cmp)]
6637 {
6638 assert_eq!(<()>::new_zeroed(), ());
6639 }
6640 }
6641
6642 #[test]
6643 fn test_transparent_packed_generic_struct() {
6644 #[derive(IntoBytes, FromBytes, Unaligned)]
6645 #[repr(transparent)]
6646 #[allow(dead_code)] // We never construct this type
6647 struct Foo<T> {
6648 _t: T,
6649 _phantom: PhantomData<()>,
6650 }
6651
6652 assert_impl_all!(Foo<u32>: FromZeros, FromBytes, IntoBytes);
6653 assert_impl_all!(Foo<u8>: Unaligned);
6654
6655 #[derive(IntoBytes, FromBytes, Unaligned)]
6656 #[repr(C, packed)]
6657 #[allow(dead_code)] // We never construct this type
6658 struct Bar<T, U> {
6659 _t: T,
6660 _u: U,
6661 }
6662
6663 assert_impl_all!(Bar<u8, AU64>: FromZeros, FromBytes, IntoBytes, Unaligned);
6664 }
6665
6666 #[cfg(feature = "alloc")]
6667 mod alloc {
6668 use super::*;
6669
6670 #[cfg(not(no_zerocopy_panic_in_const_and_vec_try_reserve_1_57_0))]
6671 #[test]
6672 fn test_extend_vec_zeroed() {
6673 // Test extending when there is an existing allocation.
6674 let mut v = vec![100u16, 200, 300];
6675 FromZeros::extend_vec_zeroed(&mut v, 3).unwrap();
6676 assert_eq!(v.len(), 6);
6677 assert_eq!(&*v, &[100, 200, 300, 0, 0, 0]);
6678 drop(v);
6679
6680 // Test extending when there is no existing allocation.
6681 let mut v: Vec<u64> = Vec::new();
6682 FromZeros::extend_vec_zeroed(&mut v, 3).unwrap();
6683 assert_eq!(v.len(), 3);
6684 assert_eq!(&*v, &[0, 0, 0]);
6685 drop(v);
6686 }
6687
6688 #[cfg(not(no_zerocopy_panic_in_const_and_vec_try_reserve_1_57_0))]
6689 #[test]
6690 fn test_extend_vec_zeroed_zst() {
6691 // Test extending when there is an existing (fake) allocation.
6692 let mut v = vec![(), (), ()];
6693 <()>::extend_vec_zeroed(&mut v, 3).unwrap();
6694 assert_eq!(v.len(), 6);
6695 assert_eq!(&*v, &[(), (), (), (), (), ()]);
6696 drop(v);
6697
6698 // Test extending when there is no existing (fake) allocation.
6699 let mut v: Vec<()> = Vec::new();
6700 <()>::extend_vec_zeroed(&mut v, 3).unwrap();
6701 assert_eq!(&*v, &[(), (), ()]);
6702 drop(v);
6703 }
6704
6705 #[cfg(not(no_zerocopy_panic_in_const_and_vec_try_reserve_1_57_0))]
6706 #[test]
6707 fn test_insert_vec_zeroed() {
6708 // Insert at start (no existing allocation).
6709 let mut v: Vec<u64> = Vec::new();
6710 u64::insert_vec_zeroed(&mut v, 0, 2).unwrap();
6711 assert_eq!(v.len(), 2);
6712 assert_eq!(&*v, &[0, 0]);
6713 drop(v);
6714
6715 // Insert at start.
6716 let mut v = vec![100u64, 200, 300];
6717 u64::insert_vec_zeroed(&mut v, 0, 2).unwrap();
6718 assert_eq!(v.len(), 5);
6719 assert_eq!(&*v, &[0, 0, 100, 200, 300]);
6720 drop(v);
6721
6722 // Insert at middle.
6723 let mut v = vec![100u64, 200, 300];
6724 u64::insert_vec_zeroed(&mut v, 1, 1).unwrap();
6725 assert_eq!(v.len(), 4);
6726 assert_eq!(&*v, &[100, 0, 200, 300]);
6727 drop(v);
6728
6729 // Insert at end.
6730 let mut v = vec![100u64, 200, 300];
6731 u64::insert_vec_zeroed(&mut v, 3, 1).unwrap();
6732 assert_eq!(v.len(), 4);
6733 assert_eq!(&*v, &[100, 200, 300, 0]);
6734 drop(v);
6735 }
6736
6737 #[cfg(not(no_zerocopy_panic_in_const_and_vec_try_reserve_1_57_0))]
6738 #[test]
6739 fn test_insert_vec_zeroed_zst() {
6740 // Insert at start (no existing fake allocation).
6741 let mut v: Vec<()> = Vec::new();
6742 <()>::insert_vec_zeroed(&mut v, 0, 2).unwrap();
6743 assert_eq!(v.len(), 2);
6744 assert_eq!(&*v, &[(), ()]);
6745 drop(v);
6746
6747 // Insert at start.
6748 let mut v = vec![(), (), ()];
6749 <()>::insert_vec_zeroed(&mut v, 0, 2).unwrap();
6750 assert_eq!(v.len(), 5);
6751 assert_eq!(&*v, &[(), (), (), (), ()]);
6752 drop(v);
6753
6754 // Insert at middle.
6755 let mut v = vec![(), (), ()];
6756 <()>::insert_vec_zeroed(&mut v, 1, 1).unwrap();
6757 assert_eq!(v.len(), 4);
6758 assert_eq!(&*v, &[(), (), (), ()]);
6759 drop(v);
6760
6761 // Insert at end.
6762 let mut v = vec![(), (), ()];
6763 <()>::insert_vec_zeroed(&mut v, 3, 1).unwrap();
6764 assert_eq!(v.len(), 4);
6765 assert_eq!(&*v, &[(), (), (), ()]);
6766 drop(v);
6767 }
6768
6769 #[test]
6770 fn test_new_box_zeroed() {
6771 assert_eq!(u64::new_box_zeroed(), Ok(Box::new(0)));
6772 }
6773
6774 #[test]
6775 fn test_new_box_zeroed_array() {
6776 drop(<[u32; 0x1000]>::new_box_zeroed());
6777 }
6778
6779 #[test]
6780 fn test_new_box_zeroed_zst() {
6781 // This test exists in order to exercise unsafe code, especially
6782 // when running under Miri.
6783 #[allow(clippy::unit_cmp)]
6784 {
6785 assert_eq!(<()>::new_box_zeroed(), Ok(Box::new(())));
6786 }
6787 }
6788
6789 #[test]
6790 fn test_new_box_zeroed_with_elems() {
6791 let mut s: Box<[u64]> = <[u64]>::new_box_zeroed_with_elems(3).unwrap();
6792 assert_eq!(s.len(), 3);
6793 assert_eq!(&*s, &[0, 0, 0]);
6794 s[1] = 3;
6795 assert_eq!(&*s, &[0, 3, 0]);
6796 }
6797
6798 #[test]
6799 fn test_new_box_zeroed_with_elems_empty() {
6800 let s: Box<[u64]> = <[u64]>::new_box_zeroed_with_elems(0).unwrap();
6801 assert_eq!(s.len(), 0);
6802 }
6803
6804 #[test]
6805 fn test_new_box_zeroed_with_elems_zst() {
6806 let mut s: Box<[()]> = <[()]>::new_box_zeroed_with_elems(3).unwrap();
6807 assert_eq!(s.len(), 3);
6808 assert!(s.get(10).is_none());
6809 // This test exists in order to exercise unsafe code, especially
6810 // when running under Miri.
6811 #[allow(clippy::unit_cmp)]
6812 {
6813 assert_eq!(s[1], ());
6814 }
6815 s[2] = ();
6816 }
6817
6818 #[test]
6819 fn test_new_box_zeroed_with_elems_zst_empty() {
6820 let s: Box<[()]> = <[()]>::new_box_zeroed_with_elems(0).unwrap();
6821 assert_eq!(s.len(), 0);
6822 }
6823
6824 #[test]
6825 fn new_box_zeroed_with_elems_errors() {
6826 assert_eq!(<[u16]>::new_box_zeroed_with_elems(usize::MAX), Err(AllocError));
6827
6828 let max = <usize as core::convert::TryFrom<_>>::try_from(isize::MAX).unwrap();
6829 assert_eq!(
6830 <[u16]>::new_box_zeroed_with_elems((max / mem::size_of::<u16>()) + 1),
6831 Err(AllocError)
6832 );
6833 }
6834 }
6835
6836 #[test]
6837 #[allow(deprecated)]
6838 fn test_deprecated_from_bytes() {
6839 let val = 0u32;
6840 let bytes = val.as_bytes();
6841
6842 assert!(u32::ref_from(bytes).is_some());
6843 // mut_from needs mut bytes
6844 let mut val = 0u32;
6845 let mut_bytes = val.as_mut_bytes();
6846 assert!(u32::mut_from(mut_bytes).is_some());
6847
6848 assert!(u32::read_from(bytes).is_some());
6849
6850 let (slc, rest) = <u32>::slice_from_prefix(bytes, 0).unwrap();
6851 assert!(slc.is_empty());
6852 assert_eq!(rest.len(), 4);
6853
6854 let (rest, slc) = <u32>::slice_from_suffix(bytes, 0).unwrap();
6855 assert!(slc.is_empty());
6856 assert_eq!(rest.len(), 4);
6857
6858 let (slc, rest) = <u32>::mut_slice_from_prefix(mut_bytes, 0).unwrap();
6859 assert!(slc.is_empty());
6860 assert_eq!(rest.len(), 4);
6861
6862 let (rest, slc) = <u32>::mut_slice_from_suffix(mut_bytes, 0).unwrap();
6863 assert!(slc.is_empty());
6864 assert_eq!(rest.len(), 4);
6865 }
6866
6867 #[test]
6868 fn test_try_ref_from_prefix_suffix() {
6869 use crate::util::testutil::Align;
6870 let bytes = &Align::<[u8; 4], u32>::new([0u8; 4]).t[..];
6871 let (r, rest): (&u32, &[u8]) = u32::try_ref_from_prefix(bytes).unwrap();
6872 assert_eq!(*r, 0);
6873 assert_eq!(rest.len(), 0);
6874
6875 let (rest, r): (&[u8], &u32) = u32::try_ref_from_suffix(bytes).unwrap();
6876 assert_eq!(*r, 0);
6877 assert_eq!(rest.len(), 0);
6878 }
6879
6880 #[test]
6881 fn test_raw_dangling() {
6882 use crate::util::AsAddress;
6883 let ptr: NonNull<u32> = u32::raw_dangling();
6884 assert_eq!(AsAddress::addr(ptr), 1);
6885
6886 let ptr: NonNull<[u32]> = <[u32]>::raw_dangling();
6887 assert_eq!(AsAddress::addr(ptr), 1);
6888 }
6889
6890 #[test]
6891 fn test_try_ref_from_prefix_with_elems() {
6892 use crate::util::testutil::Align;
6893 let bytes = &Align::<[u8; 8], u32>::new([0u8; 8]).t[..];
6894 let (r, rest): (&[u32], &[u8]) = <[u32]>::try_ref_from_prefix_with_elems(bytes, 2).unwrap();
6895 assert_eq!(r.len(), 2);
6896 assert_eq!(rest.len(), 0);
6897 }
6898
6899 #[test]
6900 fn test_try_ref_from_suffix_with_elems() {
6901 use crate::util::testutil::Align;
6902 let bytes = &Align::<[u8; 8], u32>::new([0u8; 8]).t[..];
6903 let (rest, r): (&[u8], &[u32]) = <[u32]>::try_ref_from_suffix_with_elems(bytes, 2).unwrap();
6904 assert_eq!(r.len(), 2);
6905 assert_eq!(rest.len(), 0);
6906 }
6907}